Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Mol Biol Transl Sci ; 201: 191-201, 2023.
Article in English | MEDLINE | ID: mdl-37770171

ABSTRACT

Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.


Subject(s)
Bacteriophages , Neoplasms , Humans , Bacteriophages/genetics , Drug Delivery Systems , Peptide Library , Neoplasms/genetics
2.
Prep Biochem Biotechnol ; 50(8): 768-780, 2020.
Article in English | MEDLINE | ID: mdl-32196400

ABSTRACT

The present study demonstrates a comparative analysis between the artificial neural network (ANN) and response surface methodology (RSM) as optimization tools for pretreatment and enzymatic hydrolysis of lignocellulosic rice straw. The efficacy for both the processes, that is, pretreatment and enzymatic hydrolysis was evaluated using correlation coefficient (R2) & mean squared error (MSE). The values of R2 obtained by ANN after training, validation, and testing were 1, 0.9005, and 0.997 for pretreatment and 0.962, 0.923, and 0.9941 for enzymatic saccharification, respectively. On the other hand, the R2 values obtained with RSM were 0.9965 for cellulose recovery and 0.9994 for saccharification efficiency. Thus, ANN and RSM together successfully identify the substantial process conditions for rice straw pretreatment and enzymatic saccharification. The percentage of error for ANN and RSM were 0.009 and 0.01 for cellulose recovery and for 0.004 and 0.005 for saccharification efficiency, respectively, which showed the authority of ANN in exemplifying the non-linear behavior of the system.


Subject(s)
Cellulose/metabolism , Lignin/metabolism , Oryza/metabolism , Biocatalysis , Biotechnology , Hydrolysis , Neural Networks, Computer
3.
Folia Microbiol (Praha) ; 63(5): 547-568, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29687420

ABSTRACT

The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is PUFA-rich oil production (for competing with algal omega oils) or neutral bulk oil production (for overcoming yield limitations and managing process economy) to establish this potential source as future resource.


Subject(s)
Agriculture , Biofuels , Industrial Waste , Bioreactors/microbiology , Carbohydrate Metabolism , Fermentation , Fungi/metabolism , Lignin/metabolism , Microalgae/metabolism , Yeasts/metabolism
4.
Biotechnol Lett ; 37(6): 1213-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25650347

ABSTRACT

Rice straw was pretreated using a microwave-assisted alkali pretreatment method. Cellulose recovery was approximately 82 %. This material was hydrolysed in an optimized enzymatic saccharification reaction using cellulase from Lysinibacillus sphaericus. This resulted in saccharification of 49 % of cellulosic biomass into glucose. A single chambered microbial electrolytic cell reactor of volume 2l was built using acrylic plastic sheets with graphite sheet as anode and a stainless-steel mesh as cathode. Shewanella putrefaciens was used as exoelectrogen to oxidize rice straw hydrolysate in the reactor for electrohydrogenesis. The maximum H2 yield obtained was 801 ml H2 g(-1) COD removal. Coulombic efficiency of 88 %, cathodic H2 recovery of 58 % and total H2 recovery of 51 % with an energy efficiency of 74 % were recorded.


Subject(s)
Bioelectric Energy Sources , Bioreactors/microbiology , Cellulose/metabolism , Hydrogen/metabolism , Oryza/chemistry , Shewanella putrefaciens/metabolism , Bacillaceae/enzymology , Cellulase/metabolism , Cellulose/isolation & purification , Electricity , Plant Stems/chemistry
5.
Bioresour Technol ; 173: 207-215, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25305650

ABSTRACT

Response surface methodology was used to optimise a two-step process of cellulase mediated saccharification of rice straw by an isolated bacterium Lysinibacillus sphaericus. CMC concentration, yeast extract, pH and incubation temperature were optimised for cellulase production using a central composite design and their optimum values were determined to be 4.3% (w/v), 2.1% (w/v), 6.2 and 45.2 °C respectively. The CMCase activity at these values was 5.16±0.07 U/ml, which was 2.5 times that of the un-optimised system. Similarly, pretreated rice straw, enzyme load, incubation time and Tween-80 concentrations were optimised for enhanced saccharification of rice straw by optimised cellulase preparations, and their optimum values were calculated as 1.84% (w/v), 40 U, 57.4 h and 0.76 mM respectively. A percent saccharification of 69.5% was reported at optimal conditions. HPLC analysis revealed that hydrolysate produced at optimal conditions of saccharification constituted 70.8% of glucose.


Subject(s)
Carbohydrate Metabolism , Enzymes/metabolism , Oryza/metabolism , Hydrolysis
6.
Indian J Exp Biol ; 51(10): 860-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24266111

ABSTRACT

Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.


Subject(s)
Bioelectric Energy Sources , Electrolysis/instrumentation , Hydrogen/metabolism , Bioreactors , Equipment Design , Models, Biological , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...