Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(16)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38171320

ABSTRACT

Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.

2.
ACS Omega ; 9(1): 925-933, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222564

ABSTRACT

In this contribution, we investigated the properties of magnetron-sputtered TiN thin films on sapphire and quartz substrates before and after 5 MeV electron irradiation with a fluence of 7 × 1013 e/cm2. Structural, morphological, optical, and electrical properties were analyzed to observe the impact of electron irradiation on the TiN thin films. The results showed improved electrical properties of the TiN thin films due to high-energy electron irradiation, resulting in increased specific conductivity compared to the as-deposited thin films on both sapphire and quartz substrates. The structural features of the TiN thin films on the sapphire substrate transformed from polycrystalline to amorphous, while the TiN thin films deposited on the quartz substrate remained unchanged. Chemical state analysis indicated changes in the metallic bonding between Ti and N in the deposited TiN on the sapphire substrate, while TiN deposited on the quartz substrate retained its Ti-N bonding. This study provides insights into the effects of electron irradiation on TiN thin films, emphasizing the importance of investigating radiation resistance for the reliable operation of optoelectronic devices and photovoltaic systems in extreme ionizing radiation environments.

3.
Sci Rep ; 13(1): 16114, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752226

ABSTRACT

The term 'Solar Cell' is commonly used for Photovoltaics that convert light into electrical energy. However, light can be harvested from various sources not limited to the Sun. This work considers the possibility of harvesting photons from different star types, including our closest neighbor star Proxima Centauri. The theoretical efficiency limits of single junction photovoltaic devices are calculated for different star types at a normalized light intensity corresponding to the AM0 spectrum intensity with AM0 = 1361 W/m2. An optimal bandgap of > 12 eV for the hottest O5V star type leads to 47% Shockley-Queisser photoconversion efficiency (SQ PCE), whereas a narrower optimal bandgap of 0.7 eV leads to 23% SQ PCE for the coldest red dwarf M0, M5.5Ve, and M8V type stars. Organic Photovoltaics (OPVs) are the most lightweight solar technology and have the potential to be employed in weight-restricted space applications, including foreseeable interstellar missions. With that in mind, the Sun's G2V spectrum and Proxima Centauri's M5.5Ve spectrum are considered in further detail in combination with two extreme bandgap OPV systems: one narrow bandgap system (PM2:COTIC-4F, Eg = 1.14 eV) and one wide bandgap system (PM6:o-IDTBR, Eg = 1.62 eV). Semi-empirically modeled JV-curves reveal that the absorption characteristics of the PM2:COTIC-4F blend match well with both the G2V and the M5.5Ve spectrum, yielding theoretical PCEs of 22.6% and 12.6%, respectively. In contrast, the PM6:o-IDTBR device shows a theoretical PCE of 18.2% under G2V illumination that drops sharply to 0.9% under M5.5Ve illumination.

4.
ACS Omega ; 8(23): 21212-21222, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37323420

ABSTRACT

With a power conversion efficiency (PCE) of more than 25%, perovskite solar cells (PSCs) have shown an immense potential application for solar energy conversion. Owing to lower manufacturing costs and facile processibility via printing techniques, PSCs can easily be scaled up to an industrial scale. The device performance of printed PSCs has been improving steadily with the development and optimization of the printing process for the device functional layers. Various kinds of SnO2 nanoparticle (NP) dispersion solutions including commercial ones are used to print the electron transport layer (ETL) of printed PSCs, and high processing temperatures are often required to obtain ETLs with optimum quality. This, however, limits the application of SnO2 ETLs in printed and flexible PSCs. In this work, the use of an alternative SnO2 dispersion solution based on SnO2 quantum dots (QDs) to fabricate ETLs of printed PSCs on flexible substrates is reported. A comparative analysis of the performance and properties of the obtained devices with the devices fabricated employing ETLs made with a commercial SnO2 NP dispersion solution is carried out. The ETLs made with SnO2 QDs are shown to improve the performance of devices by ∼11% on average compared to the ETLs made with SnO2 NPs. It is found that employing SnO2 QDs can reduce trap states in the perovskite layer and improve charge extraction in devices.

5.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957043

ABSTRACT

Flexible and printed perovskite solar cells (PSCs) fabricated on lightweight plastic substrates have many excellent potential applications in emerging new technologies including wearable and portable electronics, the internet of things, smart buildings, etc. To fabricate flexible and printed PSCs, all of the functional layers of devices should be processed at low temperatures. Tin oxide is one of the best metal oxide materials to employ as the electron transport layer (ETL) in PSCs. Herein, the synthesis and application of SnO2 quantum dots (QDs) to prepare the ETL of flexible and printed PSCs are demonstrated. SnO2 QDs are synthesized via a solvothermal method and processed to obtain aqueous and printable ETL ink solutions with different QD concentrations. PSCs are fabricated using a slot-die coating method on flexible plastic substrates. The solar cell performance and spectral response of the obtained devices are characterized using a solar simulator and an external quantum efficiency measurement system. The ETLs prepared using 2 wt% SnO2 QD inks are found to produce devices with a high average power conversion efficiency (PCE) along with a 10% PCE for a champion device. The results obtained in this work provide the research community with a method to prepare fully solution-processed SnO2 QD-based inks that are suitable for the deposition of SnO2 ETLs for flexible and printed PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...