Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(7): e0199617, 2018.
Article in English | MEDLINE | ID: mdl-30063710

ABSTRACT

The availability of low-cost wildlife trackers increases the capacity to collect valuable ecological data when research budgets are limited. We converted a commercially available global positioning system (GPS) product into a low-cost tracking device that sends data via the mobile phone network, and assessed its performance under varying conditions. We established a stationary test, deploying devices along a continuum from open urban areas to topographically and structurally complex forested sites. We tested three features of the device: (a) the GPS, by measuring fix success rate, fix precision and horizontal dilution of precision (HDOP), (b) remote download capacity via the mobile phone network and (c) battery drain. Measures of GPS performance demonstrated high fix success rates and precision. HDOP values were influenced by habitat type and topographical position, but generally remained very low, giving an acceptable degree of error for most applications in wildlife research. Devices experienced delayed data transmission at sites with less phone reception, and faster battery drain at sites with denser vegetation. We recorded device malfunctions in 8.2% of the 110 sampling locations, but these were not associated with habitat type or topography. Our device was effective under a wide range of conditions, and the development process we used provides guidance to other researchers aiming to develop cost-effective wildlife trackers. Reducing the financial and labour costs of acquiring high-quality movement data will improve the capacity to increase sample size in animal movement studies.


Subject(s)
Animals, Wild , Geographic Information Systems , Telemetry/methods , Animals , Australia , Cost-Benefit Analysis , Geography
2.
Ecol Evol ; 8(11): 5937-5948, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938104

ABSTRACT

Edges are ecologically important environmental features and have been well researched in agricultural and urban landscapes. However, little work has been conducted in flammable ecosystems where spatially and temporally dynamic fire edges are expected to influence important processes such as recolonization of burnt areas and landscape connectivity. We review the literature on fire, fauna, and edge effects to summarize current knowledge of faunal responses to fire edges and identify knowledge gaps. We then develop a conceptual model to predict faunal responses to fire edges and present an agenda for future research. Faunal abundance at fire edges changes over time, but patterns depend on species traits and resource availability. Responses are also influenced by edge architecture (e.g., size and shape), site and landscape context, and spatial scale. However, data are limited and the influence of fire edges on both local abundance and regional distributions of fauna is largely unknown. In our conceptual model, biophysical properties interact with the fire regime (e.g., patchiness, frequency) to influence edge architecture. Edge architecture and species traits influence edge permeability, which is linked to important processes such as movement, resource selection, and species interactions. Predicting the effect of fire edges on fauna is challenging, but important for biodiversity conservation in flammable landscapes. Our conceptual model combines several drivers of faunal fire responses (biophysical properties, regime attributes, species traits) and will therefore lead to improved predictions. Future research is needed to understand fire as an agent of edge creation; the spatio-temporal flux of fire edges across landscapes; and the effect of fire edges on faunal movement, resource selection, and biotic interactions. To aid the incorporation of new data into our predictive framework, our model has been designed as a Bayesian Network, a statistical tool capable of analyzing complex environmental relationships, dealing with data gaps, and generating testable hypotheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...