Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Clin Proteomics ; 21(1): 23, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481131

ABSTRACT

BACKGROUND: Human tear protein biomarkers are useful for detecting ocular and systemic diseases. Unfortunately, existing tear film sampling methods (Schirmer strip; SS and microcapillary tube; MCT) have significant drawbacks, such as pain, risk of injury, sampling difficulty, and proteomic disparities between methods. Here, we present an alternative tear protein sampling method using soft contact lenses (SCLs). RESULTS: We optimized the SCL protein sampling in vitro and performed in vivo studies in 6 subjects. Using Etafilcon A SCLs and 4M guanidine-HCl for protein removal, we sampled an average of 60 ± 31 µg of protein per eye. We also performed objective and subjective assessments of all sampling methods. Signs of irritation post-sampling were observed with SS but not with MCT and SCLs. Proteomic analysis by mass spectrometry (MS) revealed that all sampling methods resulted in the detection of abundant tear proteins. However, smaller subsets of unique and shared proteins were identified, particularly for SS and MCT. Additionally, there was no significant intrasubject variation between MCT and SCL sampling. CONCLUSIONS: These experiments demonstrate that SCLs are an accessible tear-sampling method with the potential to surpass current methods in sampling basal tears.

3.
J Chromatogr A ; 1701: 464044, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37196519

ABSTRACT

Offline peptide separation (PS) using high-performance liquid chromatography (HPLC) is currently used to enhance liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection of proteins. In search of more effective methods for enhancing MS proteome coverage, we developed a robust method for intact protein separation (IPS), an alternative first-dimension separation technique, and explored additional benefits that it offers. Comparing IPS to the traditional PS method, we found that both enhance detection of unique protein IDs to a similar magnitude, though in diverse ways. IPS was especially effective in serum, which has a small number of extremely high abundance proteins. PS was more effective in tissues with fewer dominating high-abundance proteins and was more effective in enhancing detection of post-translational modifications (PTMs). Combining the IPS and PS methods together (IPS+PS) was especially beneficial, enhancing proteome detection more than either method could independently. The comparison of IPS+PS versus six PS fractionation pools increased total number of proteins IDs by nearly double, while also significantly increasing number of unique peptides detected per protein, percent peptide sequence coverage of each protein, and detection of PTMs. This IPS+PS combined method requires fewer LC-MS/MS runs than current PS methods would need to obtain similar improvements in proteome detection, and it is robust, time- and cost-effective, and generally applicable to various tissue and sample types.


Subject(s)
Proteome , Proteomics , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Proteome/analysis , Proteomics/methods , Tandem Mass Spectrometry , Peptides/analysis
5.
PLoS One ; 18(3): e0271008, 2023.
Article in English | MEDLINE | ID: mdl-36930604

ABSTRACT

Differential scanning calorimetry (DSC) can indicate changes in structure and/or concentration of the most abundant proteins in a biological sample via heat denaturation curves (HDCs). In blood serum for example, HDC changes result from either concentration changes or altered thermal stabilities for 7-10 proteins and has previously been shown capable of differentiating between sick and healthy human subjects. Here, we compare HDCs and proteomic profiles of 50 patients experiencing joint-inflammatory symptoms, 27 of which were clinically diagnosed with rheumatoid arthritis (RA). The HDC of all 50 subjects appeared significantly different from expected healthy curves, but comparison of additional differences between the RA and the non-RA subjects allowed more specific understanding of RA samples. We used mass spectrometry (MS) to investigate the reasons behind the additional HDC changes observed in RA patients. The HDC differences do not appear to be directly related to differences in the concentrations of abundant serum proteins. Rather, the differences can be attributed to modified thermal stability of some fraction of the human serum albumin (HSA) proteins in the sample. By quantifying differences in the frequency of artificially induced post translational modifications (PTMs), we found that HSA in RA subjects had a much lower surface accessibility, indicating potential ligand or protein binding partners in certain regions that could explain the shift in HSA melting temperature in the RA HDCs. Several low abundance proteins were found to have significant changes in concentration in RA subjects and could be involved in or related to binding of HSA. Certain amino acid sites clusters were found to be less accessible in RA subjects, suggesting changes in HSA structure that may be related to changes in protein-protein interactions. These results all support a change in behavior of HSA which may give insight into mechanisms of RA pathology.


Subject(s)
Arthritis, Rheumatoid , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Proteomics , Protein Binding , Temperature
6.
Brain ; 146(4): 1697-1713, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36148553

ABSTRACT

Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.


Subject(s)
Meningeal Neoplasms , Meningioma , Neurilemmoma , Animals , Humans , Mice , Cell Proliferation , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromin 2/genetics , Neurofibromin 2/metabolism , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , TEA Domain Transcription Factors/metabolism
7.
J Proteome Res ; 21(11): 2703-2714, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36099490

ABSTRACT

The synthesis of new proteins and the degradation of old proteins in vivo can be quantified in serial samples using metabolic isotope labeling to measure turnover. Because serial biopsies in humans are impractical, we set out to develop a method to calculate the turnover rates of proteins from single human biopsies. This method involved a new metabolic labeling approach and adjustments to the calculations used in previous work to calculate protein turnover. We demonstrate that using a nonequilibrium isotope enrichment strategy avoids the time dependent bias caused by variable lag in label delivery to different tissues observed in traditional metabolic labeling methods. Turnover rates are consistent for the same subject in biopsies from different labeling periods, and turnover rates calculated in this study are consistent with previously reported values. We also demonstrate that by measuring protein turnover we can determine where proteins are synthesized. In human subjects a significant difference in turnover rates differentiated proteins synthesized in the salivary glands versus those imported from the serum. We also provide a data analysis tool, DeuteRater-H, to calculate protein turnover using this nonequilibrium metabolic 2H2O method.


Subject(s)
Isotopes , Proteins , Humans , Isotope Labeling/methods , Proteins/metabolism , Proteolysis , Biopsy/methods
8.
Cancer Res ; 82(2): 235-247, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34853069

ABSTRACT

Deficiency of the tumor suppressor Merlin causes development of schwannoma, meningioma, and ependymoma tumors, which can occur spontaneously or in the hereditary disease neurofibromatosis type 2 (NF2). Merlin mutations are also relevant in a variety of other tumors. Surgery and radiotherapy are current first-line treatments; however, tumors frequently recur with limited treatment options. Here, we use human Merlin-negative schwannoma and meningioma primary cells to investigate the involvement of the endogenous retrovirus HERV-K in tumor development. HERV-K proteins previously implicated in tumorigenesis were overexpressed in schwannoma and all meningioma grades, and disease-associated CRL4DCAF1 and YAP/TEAD pathways were implicated in this overexpression. In normal Schwann cells, ectopic overexpression of HERV-K Env increased proliferation and upregulated expression of c-Jun and pERK1/2, which are key components of known tumorigenic pathways in schwannoma, JNK/c-Jun, and RAS/RAF/MEK/ERK. Furthermore, FDA-approved retroviral protease inhibitors ritonavir, atazanavir, and lopinavir reduced proliferation of schwannoma and grade I meningioma cells. These results identify HERV-K as a critical regulator of progression in Merlin-deficient tumors and offer potential strategies for therapeutic intervention. SIGNIFICANCE: The endogenous retrovirus HERV-K activates oncogenic signaling pathways and promotes proliferation of Merlin-deficient schwannomas and meningiomas, which can be targeted with antiretroviral drugs and TEAD inhibitors.


Subject(s)
Anti-Retroviral Agents/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Endogenous Retroviruses/metabolism , Meningeal Neoplasms/metabolism , Meningioma/metabolism , Neurilemmoma/metabolism , Neurofibromin 2/metabolism , Viral Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , HEK293 Cells , Humans , Meningeal Neoplasms/complications , Meningeal Neoplasms/pathology , Meningeal Neoplasms/virology , Meningioma/complications , Meningioma/pathology , Meningioma/virology , Neurilemmoma/complications , Neurilemmoma/pathology , Neurilemmoma/virology , Neurofibromatosis 2/complications , Neurofibromin 2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
9.
Front Cell Neurosci ; 15: 688243, 2021.
Article in English | MEDLINE | ID: mdl-34744629

ABSTRACT

Following peripheral nerve injury, transcription factors upregulated in the distal nerve play essential roles in Schwann cell reprogramming, fibroblast activation and immune cell function to create a permissive distal nerve environment for axonal regrowth. In this report, we first analysed four microarray data sets to identify transcription factors that have at least twofold upregulation in the mouse distal nerve stump at day 3 and day 7 post-injury. Next, we compared their relative mRNA levels through the analysis of an available bulk mRNA sequencing data set at day 5 post-injury. We then investigated the expression of identified TFs in analysed single-cell RNA sequencing data sets for the distal nerve at day 3 and day 9 post-injury. These analyses identified 55 transcription factors that have at least twofold upregulation in the distal nerve following mouse sciatic nerve injury. Expression profile for the identified 55 transcription factors in cells of the distal nerve stump was further analysed on the scRNA-seq data. Transcription factor network and functional analysis were performed in Schwann cells. We also validated the expression pattern of Jun, Junb, Runx1, Runx2, and Sox2 in the mouse distal nerve stump by immunostaining. The findings from our study not only could be used to understand the function of key transcription factors in peripheral nerve regeneration but also could be used to facilitate experimental design for future studies to investigate the function of individual TFs in peripheral nerve regeneration.

10.
Front Cell Neurosci ; 15: 624826, 2021.
Article in English | MEDLINE | ID: mdl-33828460

ABSTRACT

The advances in single-cell RNA sequencing technologies and the development of bioinformatics pipelines enable us to more accurately define the heterogeneity of cell types in a selected tissue. In this report, we re-analyzed recently published single-cell RNA sequencing data sets and provide a rationale to redefine the heterogeneity of cells in both intact and injured mouse peripheral nerves. Our analysis showed that, in both intact and injured peripheral nerves, cells could be functionally classified into four categories: Schwann cells, nerve fibroblasts, immune cells, and cells associated with blood vessels. Nerve fibroblasts could be sub-clustered into epineurial, perineurial, and endoneurial fibroblasts. Identified immune cell clusters include macrophages, mast cells, natural killer cells, T and B lymphocytes as well as an unreported cluster of neutrophils. Cells associated with blood vessels include endothelial cells, vascular smooth muscle cells, and pericytes. We show that endothelial cells in the intact mouse sciatic nerve have three sub-types: epineurial, endoneurial, and lymphatic endothelial cells. Analysis of cell type-specific gene changes revealed that Schwann cells and endoneurial fibroblasts are the two most important cell types promoting peripheral nerve regeneration. Analysis of communication between these cells identified potential signals for early blood vessel regeneration, neutrophil recruitment of macrophages, and macrophages activating Schwann cells. Through this analysis, we also report appropriate marker genes for future single cell transcriptome data analysis to identify cell types in intact and injured peripheral nerves. The findings from our analysis could facilitate a better understanding of cell biology of peripheral nerves in homeostasis, regeneration, and disease.

11.
Dev Dyn ; 250(9): 1340-1357, 2021 09.
Article in English | MEDLINE | ID: mdl-33347679

ABSTRACT

BACKGROUND: Slits (1-3) and their Robo (1-3) receptors play multiple non-neuronal roles in development, including in development of muscle, heart and mammary gland. Previous work has demonstrated expression of Slit and Robo family members during limb development, where their functions are unclear. RESULTS: In situ hybridisation confirmed strong expression of Slit2, Slit3, Robo1, and Robo2 throughout mouse limb and joint development. No expression of Slit1 or Robo3 was detected. Analysis of Slit1/2 or Slit3 knockout mice revealed normal limb development. In contrast, locally blocking Slit signaling though grafting of cells expressing a dominant-negative Robo2 construct in the proximo-central region of developing chicken limb buds caused significant shortening of the humerus. CONCLUSIONS: These findings demonstrate an essential role for Slit/Robo signaling in regulating bone length during chicken limb development.


Subject(s)
Nerve Tissue Proteins , Receptors, Immunologic , Animals , Chickens , Humerus/metabolism , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/genetics
12.
Glia ; 69(2): 235-254, 2021 02.
Article in English | MEDLINE | ID: mdl-32697392

ABSTRACT

Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.


Subject(s)
Axons , Peripheral Nerve Injuries , Humans , Nerve Regeneration , Peripheral Nerves , Schwann Cells
13.
Front Cell Neurosci ; 14: 237, 2020.
Article in English | MEDLINE | ID: mdl-32848626

ABSTRACT

The fibroblast growth factor (FGF) family polypeptides play key roles in promoting tissue regeneration and repair. FGF5 is strongly up-regulated in Schwann cells of the peripheral nervous system following injury; however, a role for FGF5 in peripheral nerve regeneration has not been shown up to now. In this report, we examined the expression of FGF5 and its receptors FGFR1-4 in Schwann cells of the mouse sciatic nerve following injury, and then measured the effects of FGF5 treatment upon cultured primary rat Schwann cells. By microarray and mRNA sequencing data analysis, RT-PCR, qPCR, western blotting and immunostaining, we show that FGF5 is highly up-regulated in Schwann cells of the mouse distal sciatic nerve following injury, and FGFR1 and FGFR2 are highly expressed in Schwann cells of the peripheral nerve both before and following injury. Using cultured primary rat Schwann cells, we show that FGF5 inhibits ERK1/2 MAP kinase activity but promotes rapid Schwann cell migration and adhesion via the upregulation of N-cadherin. Thus, FGF5 is an autocrine regulator of Schwann cells to regulate Schwann cell migration and adhesion.

14.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32315290

ABSTRACT

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Subject(s)
Carcinogenesis/metabolism , Cell Proliferation , ELAV-Like Protein 1/metabolism , Neoplasm Proteins/metabolism , Nerve Sheath Neoplasms/metabolism , Signal Transduction , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , ELAV-Like Protein 1/genetics , Humans , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology
16.
Neural Regen Res ; 15(1): 6-9, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31535634

ABSTRACT

The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury; however, the potential for full repair following a transection injury is much less. Currently, the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps, which prevent regenerating axons reaching the distal nerve. Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins, Slits, Ephrins and Semaphorins. Several recent studies have indicated key roles of Netrin1, Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury. Inside the nerve bridge, nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2. EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump. Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1; within Schwann cells, Robo1 expression is also Sox2-dependent. Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge. In addition to the Slit3/Robo1 signalling system, migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor. It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap. Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps. Therefore, understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural tissue for more effective peripheral nerve repair.

17.
Cell Rep ; 26(6): 1458-1472.e4, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30726731

ABSTRACT

Slit-Robo signaling has been characterized as a repulsive signal for precise axon pathfinding and cell migration during embryonic development. Here, we describe a role for Sox2 in the regulation of Robo1 in Schwann cells and for Slit3-Robo1 signaling in controlling axon guidance within the newly formed nerve bridge following peripheral nerve transection injury. In particular, we show that macrophages form the outermost layer of the nerve bridge and secrete high levels of Slit3, while migratory Schwann cells and fibroblasts inside the nerve bridge express the Robo1 receptor. In line with this pattern of Slit3 and Robo1 expression, we observed multiple axon regeneration and cell migration defects in the nerve bridge of Sox2-, Slit3-, and Robo1-mutant mice. Our findings have revealed important functions for macrophages in the peripheral nervous system, utilizing Slit3-Robo1 signaling to control correct peripheral nerve bridge formation and precise axon targeting to the distal nerve stump following injury.


Subject(s)
Axon Guidance , Macrophages/metabolism , Membrane Proteins/metabolism , Nerve Regeneration , Peripheral Nerves/metabolism , Animals , Cell Movement , Cells, Cultured , Female , Fibroblasts/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Peripheral Nerves/physiology , Rats , Rats, Wistar , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Schwann Cells/metabolism , Signal Transduction , Roundabout Proteins
18.
Front Neurosci ; 13: 1326, 2019.
Article in English | MEDLINE | ID: mdl-31920495

ABSTRACT

Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylyl Cyclase Activating Peptide (PACAP) are regeneration-associated neuropeptides, which are up-regulated by neurons following peripheral nerve injury. So far, they have only been studied for their roles as autocrine signals for both neuronal survival and axon outgrowth during peripheral nerve regeneration. In this report, we examined VIP and PACAP's paracrine effects on Schwann cells and macrophages in the distal nerve stump during peripheral nerve regeneration. We show that VPAC1, VPAC2, and PAC1 are all up-regulated in the mouse distal nerve following peripheral nerve injury and are highly expressed in Schwann cells and macrophages within the distal sciatic nerve. We further investigated the effect of VIP and PACAP on cultured rat Schwann cells, and found that VIP and PACAP can not only promote myelin gene expression in Schwann cells but can also inhibit the release of pro-inflammatory cytokines by Schwann cells. Furthermore, we show that VIP and PACAP inhibit the release of pro-inflammatory cytokines and enhance anti-inflammatory cytokine expression in sciatic nerve explants. Our results provide evidence that VIP and PACAP could have important functions in the distal nerve stump following injury to promote remyelination and regulate the inflammatory response. Thus, VIP and PACAP receptors appear as important targets to promote peripheral nerve repair following injury.

19.
Front Mol Neurosci ; 12: 308, 2019.
Article in English | MEDLINE | ID: mdl-31920539

ABSTRACT

While it is proposed that interaction between Schwann cells and axons is key for successful nerve regeneration, the behavior of Schwann cells migrating into a nerve gap following a transection injury and how migrating Schwann cells interact with regenerating axons within the nerve bridge has not been studied in detail. In this study, we combine the use of our whole-mount sciatic nerve staining with the use of a proteolipid protein-green fluorescent protein (PLP-GFP) mouse model to mark Schwann cells and have examined the behavior of migrating Schwann cells and regenerating axons in the sciatic nerve gap following a nerve transection injury. We show here that Schwann cell migration from both nerve stumps starts later than the regrowth of axons from the proximal nerve stump. The first migrating Schwann cells are only observed 4 days following mouse sciatic nerve transection injury. Schwann cells migrating from the proximal nerve stump overtake regenerating axons on day 5 and form Schwann cell cords within the nerve bridge by 7 days post-transection injury. Regenerating axons begin to attach to migrating Schwann cells on day 6 and then follow their trajectory navigating across the nerve gap. We also observe that Schwann cell cords in the nerve bridge are not wide enough to guide all the regenerating axons across the nerve bridge, resulting in regenerating axons growing along the outside of both proximal and distal nerve stumps. From this analysis, we demonstrate that Schwann cells play a crucial role in controlling the directionality and speed of axon regeneration across the nerve gap. We also demonstrate that the use of the PLP-GFP mouse model labeling Schwann cells together with the whole sciatic nerve axon staining technique is a useful research model to study the process of peripheral nerve regeneration.

20.
Methods Mol Biol ; 1791: 251-262, 2018.
Article in English | MEDLINE | ID: mdl-30006716

ABSTRACT

Injury to the peripheral nervous system begins a well-characterized process within both neurons and Schwann cells to allow axonal regrowth, remyelination, and functional repair. Models of peripheral nerve injury have been widely used to study the behavior of Schwann cells, neurons, and other cell types such as macrophages as the events of Wallerian degeneration and regeneration take place. The most commonly used approaches in rodent models to model nerve injury in human patients are sciatic nerve transection and nerve crush, and both have well established time courses of demyelination, immune cell influx, axonal regrowth, and remyelination. We describe the techniques of sciatic nerve surgery for transection and crush injury, together with methods for the analysis of events within peripheral nerve repair in these two models.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/physiopathology , Remyelination , Animals , Axons/metabolism , Demyelinating Diseases/etiology , Disease Models, Animal , Myelin Sheath/metabolism , Nerve Crush/adverse effects , Peripheral Nerve Injuries/etiology , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...