Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 18(4): 1038-49, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18536261

ABSTRACT

Recreational angling opportunities in lakes are distributed across landscapes and attract anglers based on the combination of angling quality, travel distance, and availability of facilities. The relationship between angler density and fishing quality, as measured by catch rate, represents a numerical response that is analogous to a predator numerical response to variability in prey abundance. We quantified this numerical response of anglers to rainbow trout, Oncorhynchus mykiss, populations distributed over a large lake district in south-central British Columbia, Canada. We developed a harvest dynamics model by linking this empirical description of the spatial numerical response of anglers to a logistic population growth rate model. The model was parameterized for rainbow trout and simulated spatial patterns of angler density and catch rates over a landscape. At locations distant from urban centers, angler density is low and catch rate high, suggesting near pristine conditions; at intermediate distances angler density is higher while catch rates are lower and approximate maximum sustainable levels; and at short distances angler density is sufficiently high to harvest to local extirpation. We extrapolated the model to other lake districts varying in human population size using an empirically derived angling participation rate relationship. Extrapolation to lake districts with one-tenth the human population maintained viable fisheries close to the urban area, and districts with 10 times the human populations could not maintain viable fisheries across much of their lake district. Landscape-scale spatial patterns differed quantitatively for species varying in rates of intrinsic population growth and carrying capacity, but the qualitative spatial patterns were consistent among species, demonstrating the pervasive impacts of the angler numerical response. To achieve a management goal of sustaining fisheries across landscapes, a change in management perspective is necessary, from that of individual lakes to one of dynamic harvest processes across landscapes. This new approach makes it clear that a one-size-fits-all management approach must be replaced with a mosaic of approaches cognizant of landscape-scale processes.


Subject(s)
Fisheries , Models, Biological , Oncorhynchus , Animals , British Columbia , Fresh Water , Geography , Humans , Population Density , Population Dynamics
2.
J Evol Biol ; 20(2): 725-36, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17305838

ABSTRACT

Although morphological plasticity has been observed in a variety of taxa, few experimental studies have compared the relative proportion of morphological variability that is accounted for by environmentally induced plasticity, and how much is because of genetically based differences among populations. We compared the morphology of six rainbow trout (Oncorhynchus mykiss) populations from different ecotypic categories that were raised under flowing vs. standing-water conditions. Our data indicate that both environmental conditions and ecotypic differences account for a significant proportion of variation in morphology. Among ecotype effects, however, accounted for a much larger proportion of morphological variability than environmental conditions. Rainbow trout from stream populations had deeper caudal peduncles, and longer fins than lake populations, and rainbow trout from a piscivorous population had larger mouth and head lengths than all other ecotypes. Environmentally induced differences in morphology were primarily related to differences in mouth and head lengths, as well as fin length. Relative to morphometric differences from natural rainbow trout populations, most characteristics deviated in the same direction in our experimental populations. Our data indicate that morphological differences across rainbow trout populations have a genetic basis and may represent locally adaptive characteristics and highlight the role of ecology in promoting phenotypic divergence.


Subject(s)
Environment , Oncorhynchus mykiss/anatomy & histology , Water Movements , Adaptation, Biological/genetics , Animals , Fresh Water , Multivariate Analysis , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/physiology , Rivers , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...