Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
2.
bioRxiv ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39345458

ABSTRACT

Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.

3.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38853961

ABSTRACT

Polygenic scores (PGS) have transformed human genetic research and have multiple potential clinical applications, including risk stratification for disease prevention and prediction of treatment response. Here, we present a series of recent enhancements to the PGS Catalog (www.PGSCatalog.org), the largest findable, accessible, interoperable, and reusable (FAIR) repository of PGS. These include expansions in data content and ancestral diversity as well as the addition of new features. We further present the PGS Catalog Calculator (pgsc_calc, https://github.com/PGScatalog/pgsc_calc), an open-source, scalable and portable pipeline to reproducibly calculate PGS that securely democratizes equitable PGS applications by implementing genetic ancestry estimation and score normalization using reference data. With the PGS Catalog & calculator users can now quantify an individual's genetic predisposition for hundreds of common diseases and clinically relevant traits. Taken together, these updates and tools facilitate the next generation of PGS, thus lowering barriers to the clinical studies necessary to identify where PGS may be integrated into clinical practice.

4.
JAMIA Open ; 7(2): ooae049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38895652

ABSTRACT

Objective: To enable reproducible research at scale by creating a platform that enables health data users to find, access, curate, and re-use electronic health record phenotyping algorithms. Materials and Methods: We undertook a structured approach to identifying requirements for a phenotype algorithm platform by engaging with key stakeholders. User experience analysis was used to inform the design, which we implemented as a web application featuring a novel metadata standard for defining phenotyping algorithms, access via Application Programming Interface (API), support for computable data flows, and version control. The application has creation and editing functionality, enabling researchers to submit phenotypes directly. Results: We created and launched the Phenotype Library in October 2021. The platform currently hosts 1049 phenotype definitions defined against 40 health data sources and >200K terms across 16 medical ontologies. We present several case studies demonstrating its utility for supporting and enabling research: the library hosts curated phenotype collections for the BREATHE respiratory health research hub and the Adolescent Mental Health Data Platform, and it is supporting the development of an informatics tool to generate clinical evidence for clinical guideline development groups. Discussion: This platform makes an impact by being open to all health data users and accepting all appropriate content, as well as implementing key features that have not been widely available, including managing structured metadata, access via an API, and support for computable phenotypes. Conclusions: We have created the first openly available, programmatically accessible resource enabling the global health research community to store and manage phenotyping algorithms. Removing barriers to describing, sharing, and computing phenotypes will help unleash the potential benefit of health data for patients and the public.

5.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38881316

ABSTRACT

The use of standardised phenotyping screens to identify abnormal phenotypes in mouse knockouts, together with the use of ontologies to describe such phenotypic features, allows the implementation of an automated and unbiased pipeline to identify new models of disease by performing phenotype comparisons across species. Using data from the International Mouse Phenotyping Consortium (IMPC), approximately half of mouse mutants are able to mimic, at least partially, the human ortholog disease phenotypes as computed by the PhenoDigm algorithm. We found the number of phenotypic abnormalities in the mouse and the corresponding Mendelian disorder, the pleiotropy and severity of the disease, and the viability and zygosity status of the mouse knockout to be associated with the ability of mouse models to recapitulate the human disorder. An analysis of the IMPC impact on disease gene discovery through a publication-tracking system revealed that the resource has been implicated in at least 109 validated rare disease-gene associations over the last decade.


Subject(s)
Disease Models, Animal , Phenotype , Species Specificity , Animals , Humans , Computational Biology/methods , Mice , Mice, Knockout , Algorithms
6.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641325

ABSTRACT

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Subject(s)
Environmental Exposure , Exposome , Humans , Molecular Biology
7.
Genome Med ; 16(1): 33, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38373998

ABSTRACT

Polygenic scores (PGS) can be used for risk stratification by quantifying individuals' genetic predisposition to disease, and many potentially clinically useful applications have been proposed. Here, we review the latest potential benefits of PGS in the clinic and challenges to implementation. PGS could augment risk stratification through combined use with traditional risk factors (demographics, disease-specific risk factors, family history, etc.), to support diagnostic pathways, to predict groups with therapeutic benefits, and to increase the efficiency of clinical trials. However, there exist challenges to maximizing the clinical utility of PGS, including FAIR (Findable, Accessible, Interoperable, and Reusable) use and standardized sharing of the genomic data needed to develop and recalculate PGS, the equitable performance of PGS across populations and ancestries, the generation of robust and reproducible PGS calculations, and the responsible communication and interpretation of results. We outline how these challenges may be overcome analytically and with more diverse data as well as highlight sustained community efforts to achieve equitable, impactful, and responsible use of PGS in healthcare.


Subject(s)
Communication , Genetic Predisposition to Disease , Humans , Genomics , Multifactorial Inheritance , Risk Factors , Genome-Wide Association Study
8.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37964598

ABSTRACT

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Subject(s)
Biological Science Disciplines , Biomedical Research , Software , Workflow
9.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37721944

ABSTRACT

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Subject(s)
Multifactorial Inheritance , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genotype , Base Sequence , Genome-Wide Association Study , Polymorphism, Single Nucleotide
10.
J Biomed Semantics ; 14(1): 6, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264430

ABSTRACT

BACKGROUND: The Findable, Accessible, Interoperable and Reusable(FAIR) Principles explicitly require the use of FAIR vocabularies, but what precisely constitutes a FAIR vocabulary remains unclear. Being able to define FAIR vocabularies, identify features of FAIR vocabularies, and provide assessment approaches against the features can guide the development of vocabularies. RESULTS: We differentiate data, data resources and vocabularies used for FAIR, examine the application of the FAIR Principles to vocabularies, align their requirements with the Open Biomedical Ontologies principles, and propose FAIR Vocabulary Features. We also design assessment approaches for FAIR vocabularies by mapping the FVFs with existing FAIR assessment indicators. Finally, we demonstrate how they can be used for evaluating and improving vocabularies using exemplary biomedical vocabularies. CONCLUSIONS: Our work proposes features of FAIR vocabularies and corresponding indicators for assessing the FAIR levels of different types of vocabularies, identifies use cases for vocabulary engineers, and guides the evolution of vocabularies.


Subject(s)
Biological Ontologies , Vocabulary, Controlled , Vocabulary
11.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066341

ABSTRACT

Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation has been challenging due to extensive data normalisation which often renders the direction of the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that these ambiguities can be mitigated by visualising the association between the genotype and average RNA sequencing read coverage in the region. Here, we generate these QTL coverage plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five quantification methods. We illustrate the utility of these QTL coverage plots by performing colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are freely available at https://www.ebi.ac.uk/eqtl/.

12.
Nature ; 616(7955): 123-131, 2023 04.
Article in English | MEDLINE | ID: mdl-36991119

ABSTRACT

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Subject(s)
Coronary Artery Disease , Multiomics , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Metabolomics/methods , Phenotype , Proteomics/methods , Machine Learning , Black or African American/genetics , Asian/genetics , European People/genetics , United Kingdom , Datasets as Topic , Internet , Reproducibility of Results , Cohort Studies , Proteome/analysis , Proteome/metabolism , Metabolome , Plasma/metabolism , Databases, Factual
13.
BMC Biol ; 21(1): 22, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737727

ABSTRACT

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Subject(s)
Anophthalmos , Coloboma , Eye Abnormalities , Microphthalmos , Humans , Mice , Animals , Eye Abnormalities/genetics , Anophthalmos/genetics , Microphthalmos/genetics , Coloboma/genetics , Mice, Knockout , Embryonic Development/genetics , Phenotype , Eye , Mammals
14.
Front Physiol ; 14: 1076533, 2023.
Article in English | MEDLINE | ID: mdl-36776967

ABSTRACT

As a model organism, Drosophila is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, via text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.

15.
Nucleic Acids Res ; 51(D1): D977-D985, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350656

ABSTRACT

The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a FAIR knowledgebase providing detailed, structured, standardised and interoperable genome-wide association study (GWAS) data to >200 000 users per year from academic research, healthcare and industry. The Catalog contains variant-trait associations and supporting metadata for >45 000 published GWAS across >5000 human traits, and >40 000 full P-value summary statistics datasets. Content is curated from publications or acquired via author submission of prepublication summary statistics through a new submission portal and validation tool. GWAS data volume has vastly increased in recent years. We have updated our software to meet this scaling challenge and to enable rapid release of submitted summary statistics. The scope of the repository has expanded to include additional data types of high interest to the community, including sequencing-based GWAS, gene-based analyses and copy number variation analyses. Community outreach has increased the number of shared datasets from under-represented traits, e.g. cancer, and we continue to contribute to awareness of the lack of population diversity in GWAS. Interoperability of the Catalog has been enhanced through links to other resources including the Polygenic Score Catalog and the International Mouse Phenotyping Consortium, refinements to GWAS trait annotation, and the development of a standard format for GWAS data.


Subject(s)
Genome-Wide Association Study , Knowledge Bases , Animals , Humans , Mice , DNA Copy Number Variations , National Human Genome Research Institute (U.S.) , Phenotype , Polymorphism, Single Nucleotide , Software , United States
16.
Nucleic Acids Res ; 51(D1): D1360-D1366, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399494

ABSTRACT

PDCM Finder (www.cancermodels.org) is a cancer research platform that aggregates clinical, genomic and functional data from patient-derived xenografts, organoids and cell lines. It was launched in April 2022 as a successor of the PDX Finder portal, which focused solely on patient-derived xenograft models. Currently the portal has over 6200 models across 13 cancer types, including rare paediatric models (17%) and models from minority ethnic backgrounds (33%), making it the largest free to consumer and open access resource of this kind. The PDCM Finder standardises, harmonises and integrates the complex and diverse data associated with PDCMs for the cancer community and displays over 90 million data points across a variety of data types (clinical metadata, molecular and treatment-based). PDCM data is FAIR and underpins the generation and testing of new hypotheses in cancer mechanisms and personalised medicine development.


Subject(s)
Neoplasms , Humans , Child , Neoplasms/genetics , Neoplasms/therapy , Organoids , Xenograft Model Antitumor Assays
17.
Nucleic Acids Res ; 51(D1): D1038-D1045, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36305825

ABSTRACT

The International Mouse Phenotyping Consortium (IMPC; https://www.mousephenotype.org/) web portal makes available curated, integrated and analysed knockout mouse phenotyping data generated by the IMPC project consisting of 85M data points and over 95,000 statistically significant phenotype hits mapped to human diseases. The IMPC portal delivers a substantial reference dataset that supports the enrichment of various domain-specific projects and databases, as well as the wider research and clinical community, where the IMPC genotype-phenotype knowledge contributes to the molecular diagnosis of patients affected by rare disorders. Data from 9,000 mouse lines and 750 000 images provides vital resources enabling the interpretation of the ignorome, and advancing our knowledge on mammalian gene function and the mechanisms underlying phenotypes associated with human diseases. The resource is widely integrated and the lines have been used in over 4,600 publications indicating the value of the data and the materials.


Subject(s)
Databases, Factual , Disease Models, Animal , Mice, Knockout , Animals , Humans , Mice , Phenotype
18.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36511598

ABSTRACT

MOTIVATION: Since early 2020, the coronavirus disease 2019 (COVID-19) pandemic has confronted the biomedical community with an unprecedented challenge. The rapid spread of COVID-19 and ease of transmission seen worldwide is due to increased population flow and international trade. Front-line medical care, treatment research and vaccine development also require rapid and informative interpretation of the literature and COVID-19 data produced around the world, with 177 500 papers published between January 2020 and November 2021, i.e. almost 8500 papers per month. To extract knowledge and enable interoperability across resources, we developed the COVID-19 Vocabulary (COVoc), an application ontology related to the research on this pandemic. The main objective of COVoc development was to enable seamless navigation from biomedical literature to core databases and tools of ELIXIR, a European-wide intergovernmental organization for life sciences. RESULTS: This collaborative work provided data integration into SIB Literature services, an application ontology (COVoc) and a triage service named COVTriage and based on annotation processing to search for COVID-related information across pre-defined aspects with daily updates. Thanks to its interoperability potential, COVoc lends itself to wider applications, hopefully through further connections with other novel COVID-19 ontologies as has been established with Coronavirus Infectious Disease Ontology. AVAILABILITY AND IMPLEMENTATION: The data at https://github.com/EBISPOT/covoc and the service at https://candy.hesge.ch/COVTriage.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Triage , Commerce , Internationality
19.
Genome Med ; 14(1): 119, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229886

ABSTRACT

BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.


Subject(s)
Embryo, Mammalian , Genes, Lethal , Animals , Female , Homozygote , Humans , Mice , Mice, Knockout , Phenotype , Pregnancy
20.
Pain ; 163(6): 1139-1157, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35552317

ABSTRACT

ABSTRACT: Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


Subject(s)
Nociception , Pain , Animals , Freund's Adjuvant/toxicity , Mice , Mice, Knockout , Pain/genetics , Pain Measurement
SELECTION OF CITATIONS
SEARCH DETAIL