Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 44(4): 2157-2169, 2022 08.
Article in English | MEDLINE | ID: mdl-35349034

ABSTRACT

A critical mediator of evolution is natural selection, which operates by the divergent reproductive success of individuals and results in conformity of an organism with its environment. Reproductive function has evolved to support germline transmission. In mammalian ovaries, this requires healthy, active gonad function, and follicle development. However, healthy follicles do not contribute to germline transmission in a dead animal. Therefore, support of the health and survival of the organism, in addition to fertility, must be considered as an integral part of reproductive function. Reproductive and chronological aging both impose a burden on health and increase disease rates. Tremors are a common movement disorder and are often correlated with increasing age. Muscle quality is diminished with age and these declines are gender-specific and are influenced by menopause. In the current experiments, we evaluated aging-associated and reproduction-influenced changes in motor function, utilizing changes in tremor amplitude and grip strength. Tremor amplitude was increased with aging in normal female mice. This increase in tremor amplitude was prevented in aged female mice that received ovarian tissue transplants, both in mice that received germ cell-containing or germ cell-depleted ovarian tissue. Grip strength was decreased with aging in normal female mice. This decrease in grip strength was prevented in aged female mice that received either germ cell-containing or germ cell-depleted tissue transplants. As expected, estradiol levels decreased with aging in normal female mice. Estradiol levels did not change with exposure to young ovarian tissues/cells. Surprisingly, estradiol levels were not increased in aged females that received ovaries from actively cycling, young donors. Overall, tremor amplitude and grip strength were negatively influenced by aging and positively influenced by exposure to young ovarian tissues/cells in aged female mice, and this positive influence was independent of ovarian germ cells and estradiol levels. These findings provide a strong incentive for further investigation of the influence of ovarian somatic tissue on health. In addition, changes in tremor amplitude may serve as an additional marker of biological age.


Subject(s)
Estradiol , Tremor , Mice , Female , Animals , Reproduction/physiology , Germ Cells , Aging/physiology , Mammals
2.
J Gerontol A Biol Sci Med Sci ; 77(1): 75-83, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34528058

ABSTRACT

The link between survival and reproductive function is demonstrated across many species and is under both long-term evolutionary pressures and short-term environmental pressures. Loss of reproductive function is common in mammals and is strongly correlated with increased rates of disease in both males and females. However, the reproduction-associated change in disease rates is more abrupt and more severe in women, who benefit from a significant health advantage over men until the age of menopause. Young women with early ovarian failure also suffer from increased disease risks, further supporting the role of ovarian function in female health. Contemporary experiments where the influence of young ovarian tissue has been restored in postreproductive-aged females with surgical manipulation were found to increase survival significantly. In these experiments, young, intact ovaries were used to replace the aged ovaries of females that had already reached reproductive cessation. As has been seen previously in primitive species, when the young mammalian ovaries were depleted of germ cells prior to transplantation to the postreproductive female, survival was increased even further than with germ cell-containing young ovaries. Thus, extending reproductive potential significantly increases survival and appears to be germ cell and ovarian hormone-independent. The current review will discuss historical and contemporary observations and theories that support the link between reproduction and survival and provide hope for future clinical applications to decrease menopause-associated increases in disease risks.


Subject(s)
Aging , Reproduction , Animals , Female , Humans , Male , Mammals , Menopause , Ovary
3.
J Equine Vet Sci ; 90: 102991, 2020 07.
Article in English | MEDLINE | ID: mdl-32534769

ABSTRACT

The objective of this study was to determine if intramuscular administration of 60 units of oxytocin once daily for 29 days, regardless of when treatment was initiated during the estrous cycle (i.e., without monitoring estrous behavior and/or detecting ovulation), would induce prolonged corpus luteum (CL) function in cycling mares. Mares were randomly assigned to two groups: (1) saline-treated control (n = 7) and (2) oxytocin-treated (n = 9) subjects. Control mares received 3 cc of saline, and oxytocin-treated mares received 60 units (3 cc) of oxytocin intramuscularly for 29 consecutive days. Treatment was initiated in all mares on the same day (day 1), independent of the day of the cycle. Jugular blood samples for determination of progesterone concentration were collected three times weekly (M, W, and F) for 21 days before treatment was initiated to confirm that all mares had a luteal phase of normal duration immediately before treatment. Beginning on the first day of treatment, blood samples were collected daily for eight days and then three times weekly through day 80. Mares were considered to have prolonged CL function if serum progesterone remained >1.0 ng/mL continuously for at least 25 days after the end of the treatment period. The proportion of mares with prolonged CL function was higher in the oxytocin-treated group than in the saline-treated group (7/9 vs. 1/7, respectively; P < .05). Three of the seven oxytocin-treated mares that developed prolonged CL function initially underwent luteolysis within 4-7 days of the start of oxytocin treatment and then developed prolonged CL function after the subsequent ovulation during the treatment period. In the other four oxytocin-treated mares that developed prolonged CL function, progesterone remained >1.0 ng/mL throughout the treatment period and into the post-treatment period. All mares with prolonged CL function maintained elevated progesterone concentrations through at least day 55 of the study. In conclusion, intramuscular administration of 60 units of oxytocin for 29 consecutive days effectively prolonged CL function in mares, regardless of when treatment was initiated during the estrous cycle. Importantly, this represents a protocol for using oxytocin treatment to prolong CL function that does not require detection of estrous behavior or day of ovulation.


Subject(s)
Corpus Luteum , Oxytocin , Animals , Estrus , Female , Horses , Luteolysis , Ovulation
4.
Geroscience ; 41(1): 25-38, 2019 02.
Article in English | MEDLINE | ID: mdl-30547325

ABSTRACT

Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.


Subject(s)
Germ Cells/physiology , Inflammation/pathology , Longevity/physiology , Ovary/physiology , Reproduction/physiology , Animals , Cellular Senescence/physiology , Cytokines/blood , Female , Mice , Mice, Inbred CBA , Mice, Inbred DBA , Organ Transplantation , Ovary/cytology , Ovary/immunology , Ovum/physiology , Transplant Recipients
5.
J Vis Exp ; (132)2018 02 12.
Article in English | MEDLINE | ID: mdl-29553494

ABSTRACT

Ovarian transplantation was first conducted at Utah State University in 1963. In more recent work, heterochronic transplantation of mammalian ovaries is being used to investigate the health-protective effects of young ovaries in young females. The current procedures employ an orthotopic transplantation method, where allogenic ovaries are transplanted back to their original position in the ovarian bursa. This is in contrast to the more commonly used heterotopic transplantation of ovaries/ovarian tissue subcutaneously or under the kidney capsule. All three locations provide efficient revascularization of the transplanted tissues. However, orthotopic transplantation provides the ovary with the most natural signaling environment and is the only procedure that provides the opportunity for the animal to reproduce naturally post-operatively. One must take care to remove all endogenous ovarian tissue during the ovariectomy procedure. If any endogenous tissue remains or if only one ovary is removed, the transplanted tissue will remain dormant until the existing tissue becomes senescent. While revascularization of the transplanted ovaries occurs very quickly, the transplant recipient can take a considerable amount of time to adapt to a new hypothalamic/pituitary/gonadal/adrenal (HPG/A) axis signaling regime associated with the transplanted tissue. This normally takes about 100 days in the mouse. Therefore, transplantation experiments should be designed to accommodate this adaptation period. Typical results with ovarian transplantation will include changes in the health of the recipient that reflect the age of the transplanted ovary, rather than the chronological age of the recipient.


Subject(s)
Ovariectomy/methods , Ovary/transplantation , Animals , Female , Mice
6.
Exp Gerontol ; 92: 28-33, 2017 06.
Article in English | MEDLINE | ID: mdl-28288810

ABSTRACT

In mammals, the relationship between reproductive function and health has been particularly difficult to define. Previously, in old, postreproductive-aged mice, replacement of senescent ovaries with new ovaries from young, actively cycling mice increased life span. We hypothesized that the same factors that increased life span would also influence health span. In the current experiments, we tested two of the seven domains of function/health, sensory function and cognition to determine if exposure of postreproductive female mice to young transplanted ovaries influenced health span. We evaluated control female CBA/J mice at six, 13 and 16months of age. Additional mice received new (60d) ovaries at 12 or 17months of age and were subsequently evaluated at 16 or 25months of age, respectively. Evaluation of sensory function included two measures of olfactory perception; olfactory identification (buried pellet test) and olfactory discrimination (novel recognition block test). We found a significant age-related decline in olfactory identification in 16-month old mice. This decline was avoided by ovarian transplantation at 12months of age. The olfactory discrimination block test revealed an age-associated increase in time spent on both the novel and familiar blocks. This trend was reversed in 16-month old new-ovary recipients. We evaluated cognitive behavior with a burrowing behavior test. We detected a significant age-related decrease in burrowing behavior at 16months of age. This age-related decrease in burrowing behavior was prevented by ovarian transplantation at 12months of age. In summary, we have shown that cognitive behavior and sensory function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.


Subject(s)
Aging/physiology , Behavior, Animal , Cognition , Olfactory Perception , Ovary/transplantation , Animals , Female , Longevity , Mice , Mice, Inbred CBA , Ovariectomy , Ovary/physiology
7.
Reprod Fertil Dev ; 29(10): 2052-2059, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28182865

ABSTRACT

Proper immune functioning is necessary to maximize reproductive success. In addition, age-associated uremia in women is often associated with hypothalamic--pituitary-gonadal dysfunction. In the present experiments, we tested immune and renal function to determine if exposure of postreproductive mice to young, reproductively cycling ovaries would influence non-reproductive physiological functions. Control female CBA/J mice were evaluated at 6, 13 and 16 months of age. Additional mice received new (60-day-old) ovaries at 12 months of age and were evaluated at 16 months of age. Consequently, 6-month-old control mice and 16-month-old recipient mice both possessed 6-month-old ovaries and were reproductively cycling. A significant age-related decline in immune function (T-cell subset analysis) was found in 16-month-old mice, but was improved 64% by ovarian transplantation. Renal function (blood urea nitrogen:creatinine ratio) was also decreased with aging, but ovarian transplantation restored function to levels found in 6-month-old mice. In summary, we have shown that immune and renal function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide a strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.


Subject(s)
Aging/physiology , Immune System/physiology , Kidney/physiology , Ovary/physiology , Reproduction/physiology , Animals , Female , Mice
8.
J Transplant ; 2016: 4570842, 2016.
Article in English | MEDLINE | ID: mdl-27747096

ABSTRACT

Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.

9.
Reprod Fertil Dev ; 27(6): 914-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25976356

ABSTRACT

There is compelling evidence that oocytes from mares >18 years of age have a high incidence of inherent defects that result in early embryonic loss. In women, an age-related decrease in oocyte quality is associated with an increased incidence of aneuploidy and it has recently been determined that the gene expression profile of human oocytes is altered with advancing age. We hypothesised that similar age-related aberrations in gene expression occur in equine oocytes. Therefore, the aim of the present study was to compare gene expression profiles of individual oocytes and cumulus cells from young and aged mares, specifically evaluating genes that have been identified as being differentially expressed with advancing maternal age and/or aneuploidy in human oocytes. Expression of 48 genes was compared between 14 cumulus-oocyte complexes (COCs) from mares aged 3-12 years and 10 COCs from mares ≥18 years of age. Three genes (mitochondrial translational initiation factor 3 (IF3), heat shock transcription factor 5 (HSF5) and Y box binding protein 2 (YBX2)) were differentially expressed in oocytes, with all being more abundant in oocytes from young mares. Three genes (ADP-ribosylation factor-like 6 interacting protein 6 (ARL6IP6), BCL2-associated X protein (BAX) and hypoxia upregulated 1 (HYOU1)) were differentially expressed in cumulus cells, with all being more abundant in aged mares. The results of the present study confirm there are age-related differences in gene expression in equine COCs, which may be associated with the lower quality and decreased developmental competence of oocytes from aged mares.


Subject(s)
Cumulus Cells/metabolism , Gene Expression , Oocytes/metabolism , Age Factors , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Heat Shock Transcription Factors , Horses , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...