Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sch Health ; 91(4): 298-306, 2021 04.
Article in English | MEDLINE | ID: mdl-33665846

ABSTRACT

BACKGROUND: Schools are a promising site for influencing the dietary intake of children and adolescents. The US Department of Agriculture recently released flexibilities to requirements for whole-grains, sodium, and low-fat milk in schools who demonstrated difficulty meeting nutrition standards for school meal programs. The support of School Nutrition Directors (SNDs) is vital to the success of school food environment changes; however, few studies have explored SNDs perceptions to changes in nutrition standards. METHODS: Experiences and perspectives toward nutrition standards of 10 SNDs, and their satisfaction with flexibilities for whole-grains, sodium, and low-fat milk were explored using a semi-structured interview. Responses were analyzed using an inductive approach with thematic analysis. RESULTS: Three broad categories emerged challenges with the Healthy, Hunger-Free Kids Act, food preferences and acceptability, and support and representation. A greater need for internal and external support, assistance in equipment and staff, procurement of foods compliant with regulations and acceptable to students, and more input on federal decisions and policies were perceived as important. CONCLUSIONS: Results provide critical insight into the implementation of nutrition standards. Future research and changes to school nutrition programs should consider these challenges as they strive to meet the needs of this important population.


Subject(s)
Food Services , Adolescent , Child , Humans , Nutrition Policy , Nutritional Status , Perception , Schools , United States
2.
Life Sci ; 239: 117053, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31733316

ABSTRACT

AIMS: Intracardiac injection of recombinant EphrinA1-Fc immediately following coronary artery ligation in mice reduces infarct size in both reperfused and non-reperfused myocardium, but the cellular alterations behind this phenomenon remain unknown. MAIN METHODS: Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion (30minI/24hrsR) injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. KEY FINDINGS: At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. With respect to bioenergetics, loss of respiratory function induced by I/R was prevented by EphrinA1-Fc. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. SIGNIFICANCE: Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.


Subject(s)
Ephrin-A1/pharmacology , Mitochondria, Heart/drug effects , Reperfusion Injury/drug therapy , Animals , Disease Models, Animal , Electrophysiologic Techniques, Cardiac/methods , Energy Metabolism , Ephrin-A1/administration & dosage , Male , Mice , Mice, Inbred Strains , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocytes, Cardiac/metabolism
3.
J Am Soc Mass Spectrom ; 29(3): 527-534, 2018 03.
Article in English | MEDLINE | ID: mdl-29305797

ABSTRACT

EphrinA1 is a tyrosine kinase receptor localized in the cellular membrane of healthy cardiomyocytes, the expression of which is lost upon myocardial infarction (MI). Intra-cardiac injection of the recombinant form of ephrinA1 (ephrinA1-Fc) at the time of ligation in mice has shown beneficial effects by reducing infarct size and myocardial necrosis post-MI. To date, immunohistochemistry and Western blotting comprise the only experimental approaches utilized to localize and quantify relative changes of ephrinA1 in sections and homogenates of whole left ventricle, respectively. Herein, we used matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) coupled with a time-of-flight mass spectrometer (MALDI/TOF MS) to identify intact as well as tryptic fragments of ephrinA1 in healthy controls and acutely infarcted murine hearts. The purpose of the present study was 3-fold: (1) to spatially resolve the molecular distribution of endogenous ephrinA1, (2) to determine the anatomical expression profile of endogenous ephrinA1 after acute MI, and (3) to identify molecular targets of ephrinA1-Fc action post-MI. The tryptic fragments detected were identified as the ephrinA1-isoform with 38% and 34% sequence coverage and Mascot scores of 25 for the control and MI hearts, respectively. By using MALDI-MSI, we have been able to simultaneously measure the distribution and spatial localization of ephrinA1, as well as additional cardiac proteins, thus offering valuable information for the elucidation of molecular partners, mediators, and targets of ephrinA1 action in cardiac muscle. Graphical Abstract ᅟ.


Subject(s)
Ephrin-A1/analysis , Myocardial Infarction/pathology , Myocardium/chemistry , Myocardium/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Animals , Male , Mice
4.
PLoS One ; 12(12): e0189307, 2017.
Article in English | MEDLINE | ID: mdl-29236774

ABSTRACT

EphrinA1, a membrane-bound receptor tyrosine kinase ligand expressed in healthy cardiomyocytes, is lost in injured cells following myocardial infarction. Previously, we have reported that a single intramyocardial injection of chimeric ephrinA1-Fc at the time of ischemia reduced injury in the nonreperfused myocardium by 50% at 4 days post-MI by reducing apoptosis and inflammatory cell infiltration. In a clinically relevant model of acute ischemia (30min)/reperfusion (24hr or 4 days) injury, we now demonstrate that ephrinA1-Fc reduces infarct size by 46% and completely preserves cardiac function (ejection fraction, fractional shortening, and chamber dimensions) in the short-term (24hrs post-MI) as well as long-term (4 days). At 24 hours post-MI, diminished serum inflammatory cell chemoattractants in ephrinA1-Fc-treated mice reduces recruitment of neutrophils and leukocytes into the myocardium. Differences in relative expression levels of EphA-Rs are described in the context of their putative role in mediating cardioprotection. Validation by Western blotting of selected targets from mass spectrometry analyses of pooled samples of left ventricular tissue homogenates from mice that underwent 30min ischemia and 24hr of reperfusion (I/R) indicates that ephrinA1-Fc administration alters several regulators of signaling pathways that attenuate apoptosis, promote autophagy, and shift from FA metabolism in favor of increased glycolysis to optimize anaerobic ATP production. Taken together, reduced injury is due a combination of adaptive metabolic reprogramming, improved cell survival, and decreased inflammatory cell recruitment, suggesting that ephrinA1-Fc enhances the capacity of the heart to withstand an ischemic insult.


Subject(s)
Ephrin-A1/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Recombinant Fusion Proteins/therapeutic use , Animals , Echocardiography , Male , Mice , Myocardial Reperfusion Injury/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...