Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biosaf ; 27(1): 23-32, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36032323

ABSTRACT

Introduction: The operator protection factor (OPF) of four biological safety cabinets (BSCs) has been measured under standard and suboptimal conditions. Methods: The OPF for one BSC1, two BSC2, and an acid-fast bacilli staining station (AFBSS) was measured using the potassium iodide method for in situ testing of BSCs (CEN12469) over a range of inflow velocities under standard conditions and with common interfering factors (fans, opening doors, and walk pasts). Results: The BSC1 and the AFBSS gave a high level of protection under standard test conditions at all airflows (down to 0.3 and 0.38 m/s, respectively). During interfering processes, the BSC1 and AFBSS gave a high level of protection (OPF >105) at the specified inward airflow. At lower airflows, there was a predictable deterioration in performance. There was a significant difference in performance between the two BSC2s tested, with one model passing all tests under all interfering conditions at all airflows. The second BSC2 failed the standard test at the lowest airflow and provided poor levels of protection (OPF <105) in all tests carried out with interfering processes. Conclusion: Although BSC2s are capable of giving a high level of performance, this is design dependent and the BSC1 and AFBSS give a more predictable level of performance due to their simpler design. In environments where BSC certification is not possible, they may provide more robust and sustainable primary containment.

2.
Appl Biosaf ; 27(2): 92-99, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36035500

ABSTRACT

Background: Modern microbiology laboratories are designed to protect workers and the environment from microbial aerosols produced during microbiological procedures and accidents. However, there is only limited data available on the aerosols generated from common microbiology procedures. Methods: A series of common microbiological procedures were undertaken with high concentration spore suspensions while air samplers were operated to sample the aerosols generated. Surface contamination from droplets was visualized using sodium fluorescein within the suspension. A total of 36 procedures were studied using different sample volumes (0.1-10 mL) and two spore suspension titers (107 and 109 colony forming units [cfu]/mL). Results: The aerosol concentrations generated varied from 0 to 13,000 cfu/m3. There was evidence to suggest that titer, volume, and poor use of equipment were significant factors in increased aerosol generation from some of the procedures. A risk assessment undertaken using the data showed that any aerosol generated from these processes would be contained within a correctly operating biological safety cabinet. Therefore, with these procedures, the operator and the environment would not require any additional protective measures such as respiratory protective equipment or a negative pressure laboratory to prevent aerosol exposure or release. Conclusions: Aerosol generation from common laboratory processes can be minimized by reducing sample volumes and concentrations if possible. Training laboratory staff in good microbiological techniques would further mitigate aerosols generated from common laboratory processes.

3.
Viruses ; 13(11)2021 11 09.
Article in English | MEDLINE | ID: mdl-34835057

ABSTRACT

The global pandemic of coronavirus disease (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to an international thrust to study pathogenesis and evaluate interventions. Experimental infection of hamsters and the resulting respiratory disease is one of the preferred animal models since clinical signs of disease and virus shedding are similar to more severe cases of human COVID-19. The main route of challenge has been direct inoculation of the virus via the intranasal route. To resemble the natural infection, we designed a bespoke natural transmission cage system to assess whether recipient animals housed in physically separate adjacent cages could become infected from a challenged donor animal in a central cage, with equal airflow across the two side cages. To optimise viral shedding in the donor animals, a low and moderate challenge dose were compared after direct intranasal challenge, but similar viral shedding responses were observed and no discernible difference in kinetics. The results from our natural transmission set-up demonstrate that most recipient hamsters are infected within the system developed, with variation in the kinetics and levels of disease between individual animals. Common clinical outputs used for the assessment in directly-challenged hamsters, such as weight loss, are less obvious in hamsters who become infected from naturally acquiring the infection. The results demonstrate the utility of a natural transmission model for further work on assessing the differences between virus strains and evaluating interventions using a challenge system which more closely resembles human infection.


Subject(s)
COVID-19/transmission , Disease Models, Animal , Mesocricetus , SARS-CoV-2/physiology , Animals , COVID-19/pathology , COVID-19/virology , Cricetinae , Female , Lung/pathology , Male , Nasal Cavity/pathology , Viral Load , Virus Shedding
4.
Sci Total Environ ; 648: 25-32, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30107303

ABSTRACT

A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm-3 and 0.48 cm-3, respectively) and the composting site (2.32 cm-3 and 0.46 cm-3, respectively) and the lowest at the dairy farm (1.03 cm-3 and 0.24 cm-3, respectively) and the sewage treatment works (1.03 cm-3 and 0.25 cm-3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores.

5.
Clin Infect Dis ; 64(3): 335-342, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27927870

ABSTRACT

BACKGROUND: An urgent UK investigation was launched to assess risk of invasive Mycobacterium chimaera infection in cardiothoracic surgery and a possible association with cardiopulmonary bypass heater-cooler units following alerts in Switzerland and The Netherlands. METHODS: Parallel investigations were pursued: (1) identification of cardiopulmonary bypass-associated M. chimaera infection through national laboratory and hospital admissions data linkage; (2) cohort study to assess patient risk; (3) microbiological and aerobiological investigations of heater-coolers in situ and under controlled laboratory conditions; and (4) whole-genome sequencing of clinical and environmental isolates. RESULTS: Eighteen probable cases of cardiopulmonary bypass-associated M. chimaera infection were identified; all except one occurred in adults. Patients had undergone valve replacement in 11 hospitals between 2007 and 2015, a median of 19 months prior to onset (range, 3 months to 5 years). Risk to patients increased after 2010 from <0.2 to 1.65 per 10000 person-years in 2013, a 9-fold rise for infections within 2 years of surgery (rate ratio, 9.08 [95% CI, 1.81-87.76]). Endocarditis was the most common presentation (n = 11). To date, 9 patients have died. Investigations identified aerosol release through breaches in heater-cooler tanks. Mycobacterium chimaera and other pathogens were recovered from water and air samples. Phylogenetic analysis found close clustering of strains from probable cases. CONCLUSIONS: We identified low but escalating risk of severe M. chimaera infection associated with heater-coolers with cases in a quarter of cardiothoracic centers. Our investigations strengthen etiological evidence for the role of heater-coolers in transmission and raise the possibility of an ongoing, international point-source outbreak. Active management of heater-coolers and heightened clinical awareness are imperative given the consequences of infection.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Equipment Contamination , Mycobacterium Infections, Nontuberculous/epidemiology , Nontuberculous Mycobacteria/isolation & purification , Surgical Equipment/microbiology , Surgical Wound Infection/epidemiology , Surgical Wound Infection/microbiology , Adult , Aged , Aged, 80 and over , Air Microbiology , Child , Cohort Studies , Female , Humans , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/mortality , Mycobacterium Infections, Nontuberculous/transmission , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/genetics , Retrospective Studies , Risk Factors , Surgical Wound Infection/mortality , United Kingdom/epidemiology , Water Microbiology
6.
Biofouling ; 31(9-10): 677-87, 2015.
Article in English | MEDLINE | ID: mdl-26652665

ABSTRACT

Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.


Subject(s)
Biofilms/growth & development , Cross Infection/prevention & control , Equipment and Supplies, Hospital/microbiology , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/growth & development , Water Supply/standards , Cross Infection/microbiology , Drinking Water/microbiology , Equipment Design , Equipment and Supplies, Hospital/standards , Humans , Pseudomonas Infections/microbiology , United Kingdom , Water Microbiology/standards
7.
Appl Environ Microbiol ; 81(15): 4914-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979883

ABSTRACT

The aim of this study was to quantify reaerosolization of microorganisms caused by walking on contaminated flooring to assess the risk to individuals accessing areas contaminated with pathogenic organisms, for example, spores of Bacillus anthracis. Industrial carpet and polyvinyl chloride (PVC) floor coverings were contaminated with aerosolized spores of Bacillus atrophaeus by using an artist airbrush to produce deposition of ∼10(3) to 10(4) CFU · cm(-2). Microbiological air samplers were used to quantify the particle size distribution of the aerosol generated when a person walked over the floorings in an environmental chamber. Results were expressed as reaerosolization factors (percent per square centimeter per liter), to represent the ratio of air concentration to surface concentration generated. Walking on carpet generated a statistically significantly higher reaerosolization factor value than did walking on PVC (t = 20.42; P < 0.001). Heavier walking produced a statistically significantly higher reaerosolization factor value than did lighter walking (t = 12.421; P < 0.001). Height also had a statistically significant effect on the reaerosolization factor, with higher rates of recovery of B. atrophaeus at lower levels, demonstrating a height-dependent gradient of particle reaerosolization. Particles in the respirable size range were recovered in all sampling scenarios (mass mean diameters ranged from 2.6 to 4.1 µm). The results of this study can be used to produce a risk assessment of the potential aerosol exposure of a person accessing areas with contaminated flooring in order to inform the choice of appropriate respiratory protective equipment and may aid in the selection of the most suitable flooring types for use in health care environments, to reduce aerosol transmission in the event of contamination.


Subject(s)
Aerosols , Air Microbiology , Bacillus/isolation & purification , Floors and Floorcoverings , Movement , Spores, Bacterial/isolation & purification , Environmental Monitoring/methods , Humans , Particle Size
8.
Am J Infect Control ; 42(3): 260-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24581014

ABSTRACT

BACKGROUND: Understanding Staphylococcus aureus dispersal from human carriers is vital for preventing transmission and colonization of this organism in health care settings. This study investigated the S aureus supershedder hypothesis in relation to attributes of healthy volunteers. METHODS: Microbial aerosol generation from volunteers was quantified within a controlled environmental chamber during walking or sitting activities. Biological air samplers were used to determine numbers of total S aureus colony-forming units disseminated during these activities. RESULTS: A total of 17 volunteers was sampled on 3 occasions. Hairstyle (long hair tied up or a shaved head) was the only significant predictor of dissemination of S aureus (5% significance level). No other significant effects were found at the 5% level. A negative binomial distribution provides the best fit with respect to S aureus. CONCLUSION: We found that, in the context of our small sample size, hairstyle (long hair tied up or a shaved head) statistically affected levels of bacteria shed from volunteers. However, we found no evidence for "supershedders" or "cloud adults," suggesting they are at an extreme end of a continuous distribution.


Subject(s)
Aerosols , Carrier State/epidemiology , Fomites/microbiology , Healthy Volunteers , Staphylococcal Infections/epidemiology , Staphylococcus aureus/isolation & purification , Adolescent , Adult , Carrier State/microbiology , Female , Humans , Male , Middle Aged , Staphylococcal Infections/microbiology , Young Adult
9.
PLoS One ; 8(2): e56278, 2013.
Article in English | MEDLINE | ID: mdl-23418548

ABSTRACT

BACKGROUND: Nosocomial infection of health-care workers (HCWs) during outbreaks of respiratory infections (e.g. Influenza A H1N1 (2009)) is a significant concern for public health policy makers. World Health Organization (WHO)-defined 'aerosol generating procedures' (AGPs) are thought to increase the risk of aerosol transmission to HCWs, but there are presently insufficient data to quantify risk accurately or establish a hierarchy of risk-prone procedures. METHODOLOGY/PRINCIPAL FINDINGS: This study measured the amount of H1N1 (2009) RNA in aerosols in the vicinity of H1N1 positive patients undergoing AGPs to help quantify the potential risk of transmission to HCWs. There were 99 sampling occasions (windows) producing a total of 198 May stages for analysis in the size ranges 0.86-7.3 µm. Considering stages 2 (4-7.3 µm) and 3 (0.86-4 µm) as comprising one sample, viral RNA was detected in 14 (14.1%) air samples from 10 (25.6%) patients. Twenty three air samples were collected while potential AGPs were being performed of which 6 (26.1%) contained viral RNA; in contrast, 76 May samples were collected when no WHO 2009 defined AGP was being performed of which 8 (10.5%) contained viral RNA (unadjusted OR = 2.84 (95% CI 1.11-7.24) adjusted OR = 4.31 (0.83-22.5)). CONCLUSIONS/SIGNIFICANCE: With our small sample size we found that AGPs do not significantly increase the probability of sampling an H1N1 (2009) positive aerosol (OR (95% CI) = 4.31 (0.83-22.5). Although the probability of detecting positive H1N1 (2009) positive aerosols when performing various AGPs on intensive care patients above the baseline rate (i.e. in the absence of AGPs) did not reach significance, there was a trend towards hierarchy of AGPs, placing bronchoscopy and respiratory and airway suctioning above baseline (background) values. Further, larger studies are required but these preliminary findings may be of benefit to infection control teams.


Subject(s)
Aerosols/analysis , Cross Infection/prevention & control , Influenza, Human/transmission , Adolescent , Adult , Aged , Air Microbiology/standards , Bronchoscopy/statistics & numerical data , Child , Child, Preschool , Cross Infection/virology , Female , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics/prevention & control , RNA, Viral/genetics , Respiratory System/virology , Risk Assessment , Risk Factors , United Kingdom/epidemiology , World Health Organization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...