Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37164021

ABSTRACT

Objective. The all-in-one solution and modularity of the C13500 series TOF-PET detector modules (Hamamatsu Photonics K.K., Hamamatsu, Japan) make them a highly attractive candidate for the development of positron emission tomography (PET) systems. However, the commercially available portfolio targets clinical whole-body PET systems with a scintillation crystal cross area of 3.1 × 3.1 mm2. To extend the modules for high resolution (preclinical or organ specific) systems, the support for smaller scintillation crystals is required.Approach.In this work, a PET detector was developed based on the TOF-PET modules using a light sharing approach, 16 × 16 lutetium oxyorthosilicate (LSO) scintillation crystals with a size of 1.51 × 1.51 × 10.00 mm3readout with 8 × 8 photosensor channels of size 3.0 × 3.0 mm2. In addition to hardware and software development, the optimized parameter settings for the adapted configuration were evaluated.Main Results.A factor of two in amplification of the analog signal compared to the minimum gain setting was necessary for an accurate crystal identification (peak-to-valley ratio 14.9 ± 5.9). A further increase to a factor of three was not determined as optimum as the time over threshold duration, thus pile-up probability, increased from 1032.1 ± 109.5 to 1789.5 ± 218.5 ns (photopeak position). With this amplification a full width at half maximum (FWHM) energy resolution of 14.1 ± 2.0% and a high linearity of the energy detection was obtained. A FWHM coincidence resolving time (CRT) of 313 ps was achieved by using a low timing threshold, increasing the bandwidth of the front-end circuit and using a narrow ± 1σenergy window. To approximately double the sensitivity and reduce the power consumption, the timing parameters were adjusted resulting in a FWHM CRT of 354 ps (±2σ).Significance.Based on the results obtained with the proof-of-concept detector setup, we confirm the modularity and flexibility of the all-in-one TOF-PET detector modules for the future development of application-specific high-resolution PET systems.


Subject(s)
Electronics , Positron-Emission Tomography , Positron-Emission Tomography/methods , Time
2.
Phys Med Biol ; 64(5): 055004, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30654339

ABSTRACT

The outcome of preclinical imaging studies are enhanced by simultaneous, high-resolution anatomical and molecular data, which advanced PET/MRI systems provide. Nevertheless, mapping of neuroreceptors and accurate quantification of PET tracer distribution in mouse brains is not trivial. The restricted spatial resolution and sensitivity in commercial animal PET systems limits the image quality and the quantification accuracy. We are currently developing a PET/MRI system dedicated for mouse brain studies. The PET system will offer system dimensions of approx. 30 mm in diameter and an axial length of more than 38 mm. This work discusses two system geometries including their associated block detectors. Both configurations were based on a dual layer offset structure with small crystals sizes, in the order of 1  × 1 × 4/6 mm3, to provide discrete depth of interaction information. The detector for configuration 'A' was based on a 4 × 4 silicon photomultiplier (SiPM) array attached to an optical diffusor, and a 12 × 12 as well as a 9 × 11 LSO crystal array, to achieve optimal system sensitivity. This configuration was evaluated by a double layer of 12 × 12 crystals. Configuration 'B' was composed of three 2 × 2 SiPM arrays equipped with a 1 mm diffusor to read out an LSO stack of 20  × 6 and 19  × 5 individual crystals. The average peak-to-valley ratio of the inner/outer layer was 3.5/3.6 for detector 'A', and 3.4/2.8 for detector 'B'. The average full width at half maximum (FWHM) energy resolution of the block detectors were 22.24% ± 3.36% for 'A' and 30.67% ± 5.37% for 'B'. The FWHM of the full block timing resolution of the inner/outer layer was 1.4 ns/1.2 ns for detector 'A' and 1.8 ns/1.4 ns for 'B'. The performance of the crystal position profile, the energy, and timing resolution indicate that configuration 'A' is more appropriate for a mouse brain PET/MRI system.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Animals , Equipment Design , Mice , Silicon
3.
Phys Med Biol ; 62(18): 7357-7378, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862997

ABSTRACT

Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system. This allows positioning the scintillators near the object but requires an optimized design of the MRI coil and PET detector. It further requires a new approach in realizing the radiofrequency (RF) shielding. Thus, we propose the use of an optically transparent RF shielding material between the PET scintillator and the light sensor, suppressing the interference between both systems. We evaluated two conductive foils (ITO, 9900) and a wire mesh. The PET performance was tested on a dual-layer scintillator consisting of 12 × 12 LSO matrices, shifted by half a pitch. The pixel size was 0.9 × 0.9 mm2; the lengths were 10.0 mm and 5.0 mm, respectively. For a light sensor, we used a 4 × 4 SiPM array. The RF attenuation was measured from 320 kHz to 420 MHz using two pick-up coils. MRI-compatibility and shielding effect of the materials were evaluated with an MRI system. The average FWHM energy resolution at 511 keV of all 144 crystals of the layer next to the SiPM was deteriorated from 15.73 ± 0.24% to 16.32 ± 0.13%, 16.60 ± 0.25%, and 19.16 ± 0.21% by the ITO foil, 9900 foil, mesh material, respectively. The average peak-to-valley ratio of the PET detector changed from 5.77 ± 0.29 to 4.50 ± 0.39, 4.78 ± 0.48, 3.62 ± 0.16, respectively. The ITO, 9900, mesh attenuated the scintillation light by 11.3 ± 1.6%, 11.0 ± 1.8%, 54.3 ± 0.4%, respectively. To attenuate the RF from 20 MHz to 200 MHz, mesh performed better than copper. The results show that an RF shielding material that is sufficiently transparent for scintillation light and is MRI compatible can be obtained. This result enables the development of a fully integrated PET detector and MRI coil assembly.


Subject(s)
Light , Magnetic Resonance Imaging/methods , Patient Positioning/instrumentation , Phantoms, Imaging , Positron-Emission Tomography/methods , Radio Waves , Humans
4.
Med Phys ; 41(8): 081916, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25086547

ABSTRACT

PURPOSE: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. METHODS: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25 µm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated (18)F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. RESULTS: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. CONCLUSIONS: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.


Subject(s)
Positron-Emission Tomography/instrumentation , Animals , Electrical Equipment and Supplies , Equipment Design , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Multimodal Imaging/instrumentation , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Time
5.
Phys Med Biol ; 55(3): 635-46, 2010 Feb 07.
Article in English | MEDLINE | ID: mdl-20071758

ABSTRACT

Positron emitters such as (11)C, (13)N and (18)F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is (11)CO(2) since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.


Subject(s)
Plants , Positron-Emission Tomography/instrumentation , Carbon Dioxide , Carbon Radioisotopes , Equipment Design , Hordeum , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Plant Roots , Positron-Emission Tomography/methods , Rotation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...