Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(12): 105451, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951306

ABSTRACT

Cryptochromes (CRYs) are essential components of the circadian clock, playing a pivotal role as transcriptional repressors. Despite their significance, the precise mechanisms underlying CRYs' involvement in the circadian clock remain incompletely understood. In this study, we identified a rare CRY2 variant, p.Ser420Phe, from the 1000 Genomes Project and Ensembl database that is located in the functionally important coiled-coil-like helix (CC-helix) region. Functional characterization of this variant at the cellular level revealed that p.Ser420Phe CRY2 had reduced repression activity on CLOCK:BMAL1-driven transcription due to its reduced affinity to the core clock protein PER2 and defective translocation into the nucleus. Intriguingly, the CRY2 variant exhibited an unexpected resistance to degradation via the canonical proteasomal pathway, primarily due to the loss of interactions with E3 ligases (FBXL3 and FBXL21), which suggests Ser-420 of CRY2 is required for the interaction with E3 ligases. Further studies revealed that wild-type and CRY2 variants are degraded by the lysosomal-mediated degradation pathway, a mechanism not previously associated with CRY2. Surprisingly, our complementation study with Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cells indicated that the CRY2 variant caused a 7 h shorter circadian period length in contrast to the observed prolonged period length in CRY2-/- cell lines. In summary, this study reveals a hitherto unknown degradation pathway for CRY2, shedding new light on the regulation of circadian rhythm period length.


Subject(s)
Amino Acid Substitution , Circadian Clocks , Cryptochromes , Animals , Humans , Mice , Circadian Clocks/physiology , Circadian Rhythm/physiology , CLOCK Proteins/metabolism , Cryptochromes/genetics , Cryptochromes/metabolism , Fibroblasts/metabolism , Lysosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line
2.
J Biol Chem ; 298(9): 102334, 2022 09.
Article in English | MEDLINE | ID: mdl-35933018

ABSTRACT

Human clock-gene variations contribute to the phenotypic differences observed in various behavioral and physiological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. However, little is known about the possible effects of identified variations at the molecular level. In this study, we performed a functional characterization at the cellular level of rare cryptochrome 2 (CRY2) missense variations that were identified from the Ensembl database. Our structural studies revealed that three variations (p.Pro123Leu, p.Asp406His, and p.Ser410Ile) are located at the rim of the secondary pocket of CRY2. We show that these variants were unable to repress CLOCK (circadian locomotor output cycles kaput)/BMAL1 (brain and muscle ARNT-like-1)-driven transcription in a cell-based reporter assay and had reduced affinity to CLOCK-BMAL1. Furthermore, our biochemical studies indicated that the variants were less stable than the WT CRY2, which could be rescued in the presence of period 2 (PER2), another core clock protein. Finally, we found that these variants were unable to properly localize to the nucleus and thereby were unable to rescue the circadian rhythm in a Cry1-/-Cry2-/- double KO mouse embryonic fibroblast cell line. Collectively, our data suggest that the rim of the secondary pocket of CRY2 plays a significant role in its nuclear localization independently of PER2 and in the intact circadian rhythm at the cellular level.


Subject(s)
ARNTL Transcription Factors , CLOCK Proteins , Circadian Rhythm , Cryptochromes , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/metabolism , Circadian Rhythm/physiology , Cryptochromes/chemistry , Cryptochromes/genetics , Cryptochromes/metabolism , Fibroblasts , Humans , Mice , Protein Domains , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...