Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 3(Pt 5): 367-376, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-28461897

ABSTRACT

We report a molecular crystal that exhibits four successive phase transitions under hydro-static pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(µ2-3,5-diiso-propyl-1,2,4-triazolato-κ2N1:N2)trigold(I) (denoted Form-I and Form-II) has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P21/n phase above 1 GPa, followed by a P21/a phase above 2 GPa and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P21/n phase then reappearing at higher pressure. The observation of crystallographically identical low- and high-pressure P21/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm-1 at 2.40 GPa, decreasing steeply to 13550 cm-1 at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes.

2.
Chemistry ; 20(51): 16933-42, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25331304

ABSTRACT

A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au⋅⋅⋅Au interactions in a series of pyrazolate-based gold(I) trimers; tris(µ2 -pyrazolato-N,N')-tri-gold(I) (1), tris(µ2 -3,4,5- trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(µ2 -3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(µ2 -3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au⋅⋅⋅Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au⋅⋅⋅Au contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au⋅⋅⋅Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm(-1) per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au⋅⋅⋅Au distance observed by diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...