Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Microbiol ; 200(4): 611-622, 2018 May.
Article in English | MEDLINE | ID: mdl-29330592

ABSTRACT

Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.


Subject(s)
Enterobacteriaceae/virology , Myoviridae/genetics , Bacteria/genetics , Bacterial Infections/microbiology , Bacterial Infections/therapy , Enterobacteriaceae/genetics , Genome, Viral , Genomics , High-Throughput Nucleotide Sequencing , Humans , Wastewater , Whole Genome Sequencing
2.
Front Microbiol ; 8: 559, 2017.
Article in English | MEDLINE | ID: mdl-28439260

ABSTRACT

Innovations in next-generation sequencing technology have introduced new avenues in microbial studies through "omics" approaches. This technology has considerably augmented the knowledge of the microbial world without isolation prior to their identification. With an enormous volume of bacterial "omics" data, considerable attempts have been recently invested to improve an insight into virosphere. The interplay between bacteriophages and their host has created a significant influence on the biogeochemical cycles, microbial diversity, and bacterial population regulation. This review highlights various concepts such as genomics, transcriptomics, proteomics, and metabolomics to infer the phylogenetic affiliation and function of bacteriophages and their impact on diverse microbial communities. Omics technologies illuminate the role of bacteriophage in an environment, the influences of phage proteins on the bacterial host and provide information about the genes important for interaction with bacteria. These investigations will reveal some of bio-molecules and biomarkers of the novel phage which demand to be unveiled.

3.
Appl Biochem Biotechnol ; 181(3): 1007-1029, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27723009

ABSTRACT

The spread of multidrug-resistant (MDR) bacteria is an emerging threat to the environment and public wellness. Inappropriate use and indiscriminate release of antibiotics in the environment through un-metabolized form create a scenario for the emergence of virulent pathogens and MDR bugs in the surroundings. Mechanisms underlying the spread of resistance include horizontal and vertical gene transfers causing the transmittance of MDR genes packed in different host, which pass across different food webs. Several controlling agents have been used for combating pathogens; however, the use of lytic bacteriophages proves to be one of the most eco-friendly due to their specificity, killing only target bacteria without damaging the indigenous beneficial flora of the habitat. Phages are part of the natural microflora present in different environmental niches and are remarkably stable in the environment. Diverse range of phage products, such as phage enzymes, phage peptides having antimicrobial properties, and phage cocktails also have been used to eradicate pathogens along with whole phages. Recently, the ability of phages to control pathogens has extended from the different areas of medicine, agriculture, aquaculture, food industry, and into the environment. To avoid the arrival of pre-antibiotic epoch, phage intervention proves to be a potential option to eradicate harmful pathogens generated by the MDR gene flow which are uneasy to cure by conventional treatments.


Subject(s)
Bacteria , Bacteriophages/physiology , Drug Resistance, Multiple, Bacterial , Gene Transfer, Horizontal/physiology , Bacteria/genetics , Bacteria/metabolism , Bacteria/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...