Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Rep ; 21(2): 483-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19148526

ABSTRACT

ABCG2 is an important member of ATP-binding cassette (ABC) transporter shown to confer drug resistance in cancer cells. Recent studies show that an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), gefitinib, is able to modulate the function of ABCG2 and reverse ABCG2-mediated multidrug resistance (MDR) in cancer cells. Additionally, ABCG2 expression has been shown to impact treatment efficacy and development of side-effects in patients receiving gefitinib. However, it is unclear whether other EGFR TKIs interact with ABCG2 in a similar manner. In the present study, we investigated the interaction of two other EGFR TKIs, AG1478 and erlotinib, with ABCG2. Our data show that AG1478 and erlotinib potently sensitized drug-resistant cells overexpressing either wild-type or mutated ABCG2 to the ABCG2 substrate anti-cancer drugs flavopiridol and mitoxantrone. Neither AG1478 nor erlotinib sensitized ABCG2-overexpressing cells to drugs that are not substrates of ABCG2 nor did they impact drug sensitivity of parental cells. Furthermore, AG1478 and erlotinib were able to significantly enhance the intracellular accumulation of mitoxantrone in cells expressing either wild-type or mutated ABCG2. Additionally, they did not alter the protein expression of ABCG2 in the ABCG2-overexpressing cells. Taken together, we conclude that AG1478 and erlotinib potently reverse ABCG2-mediated MDR through directly inhibiting the drug efflux function of ABCG2 in the ABCG2-overexpressing cells. These results will be useful in the development of novel and more effective EGFR TKIs as well as the development of combinational chemotherapeutic strategies.


Subject(s)
ATP-Binding Cassette Transporters/drug effects , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Neoplasm Proteins/drug effects , Quinazolines/pharmacology , Tyrphostins/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Line, Tumor , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Erlotinib Hydrochloride , Female , Humans , Mitoxantrone/metabolism , Mitoxantrone/pharmacology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
2.
Biochem Pharmacol ; 77(5): 781-93, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19059384

ABSTRACT

The tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) is a potent and specific EGFR tyrosine kinase inhibitor (TKI); its promising pre-clinical results have led to clinical trials. Overexpression of ATP-binding cassette (ABC) transporters such as ABCB1, ABCC1 and ABCG2 is one of the main causes of multidrug resistance (MDR) and usually results in the failure of cancer chemotherapy. However, the interaction of AG1478 with these ABC transporters is still unclear. In the present study, we have investigated this interaction and found that AG1478 has differential effects on these transporters. In ABCB1-overexpressing cells, non-toxic doses of AG1478 were found to partially inhibit resistance to ABCB1 substrate anticancer drugs as well as increase intracellular accumulation of [3H]-paclitaxel. Similarly, in ABCG2-overexpressing cells, AG1478 significantly reversed resistance to ABCG2 substrate anticancer drugs and increased intracellular accumulation of [3H]-mitoxantrone as well as fluorescent compound BODIPY-prazosin. AG1478 also profoundly inhibited the transport of [3H]-E(2)17betaG and [3H]-methotrexate by ABCG2. We also found that AG1478 slightly stimulated ABCB1 ATPase activity and significantly stimulated ABCG2 ATPase activity. Interestingly, AG1478 did not inhibit the photolabeling of ABCB1 or ABCG2 with [125I]-iodoarylazidoprazosin. Additionally, AG1478 did not alter the sensitivity of parental, ABCB1- or ABCG2-overexpressing cells to non-ABCB1 and non-ABCG2 substrate drug and had no effect on the function of ABCC1. Overall, we conclude that AG1478 is able to inhibit the function of ABCB1 and ABCG2, with a more pronounced effect on ABCG2. Our findings provide valuable contributions to the development of safer and more effective EGFR TKIs for use as anticancer agents in the clinic.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP-Binding Cassette Transporters/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Tyrphostins/pharmacology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antineoplastic Agents/pharmacokinetics , Blotting, Western , Cell Line, Tumor , Flow Cytometry , Humans , Immunohistochemistry , Quinazolines , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...