Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Pharmacol ; 960: 176089, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37838103

ABSTRACT

Diabetes and its complications are increasing worldwide in the working population as well as in elders. Prolonged hyperglycemia results in damage to blood vessels of various tissues followed by organ damage. Hyperglycemia-induced damage in small blood vessels as in nephrons, retina, and neurons results in diabetic microvascular complications which involve nephropathy, retinopathy, and diabetic neuropathy. Additionally, damage in large blood vessels is considered as a macrovascular complication including diabetic cardiomyopathy. These long-term complications can result in organ failure and thus becomes the leading cause of diabetic-related mortality in patients. Members of the Forkhead Box O family (FOXO) are involved in various body functions including cell proliferation, metabolic processes, differentiation, autophagy, and apoptosis. Moreover, increasing shreds of evidence suggest the involvement of FOXO family members FOXO1, FOXO3, FOXO4, and FOXO6 in several chronic diseases including diabetes and diabetic complications. Hence, this review focuses on the role of FOXO transcription factors in the regulation of diabetic complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Diabetic Cardiomyopathies , Hyperglycemia , Humans , Aged , Forkhead Transcription Factors/metabolism , Cell Differentiation
2.
Pharmacol Res ; 184: 106408, 2022 10.
Article in English | MEDLINE | ID: mdl-35988870

ABSTRACT

The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Hyperglycemia , Insulin Resistance , AMP-Activated Protein Kinases , Autophagy/physiology , Humans , Nutrients , Obesity , Reactive Oxygen Species , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases
3.
Pharmacol Res ; 175: 106014, 2022 01.
Article in English | MEDLINE | ID: mdl-34856334

ABSTRACT

The prevalence of diabetes is continuously increasing in the recent decades. Persistent hyperglycemia, hyperinsulinemia and the subsequent oxidative stress result in diabetic complications, primarily categorized as microvascular (nephropathy, retinopathy and neuropathy) and macrovascular (cardiomyopathy) complications. The complications are prevalent in both type 1 and type 2 diabetic patients. Polyol pathway, elevated AGE production, PKC activation and hexosamine pathway are indeed the critical pathways involved in the progression of diabetic complications. Silent information regulator 2 or SIR2 or more commonly known as sirtuins are NAD+ dependent histone deacetylase. SIRT1, a member of the sirtuin family has been extensively studied for its role in lifespan extension and needs to be explored for its beneficial effects in diabetic complications. Moreover, it is also known to regulate the activity of other proteins and transcription factors. One such substrate of SIRT1 is FOXOs transcription factor which has gained much attention as the mediator of various cellular processes such as cell cycle arrest and proliferation, DNA repair and metabolism. It has been reported that SIRT1 regulates the activity of FOXOs, whereas few recent advances also suggest a role FOXOs in governing the activity of SIRT1, which permits for a crosstalk between SIRT1 and FOXOs. Therefore, the focus of the present review is to describe and explore the interaction between SIRT1 and FOXOs, predominantly FOXO1 and FOXO3 and to understand the underlying mechanism of SIRT1-FOXOs in controlling and alleviating diabetic complications. Thus, this crosstalk suggests that SIRT1 and FOXOs may serve as potential therapeutic targets in treating diabetic complications.


Subject(s)
Diabetes Complications/metabolism , Forkhead Transcription Factors/metabolism , Sirtuin 1/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...