Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 16(739): eadd8936, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507467

ABSTRACT

Glucocorticoids (GCs) are efficacious drugs used for treating many inflammatory diseases, but the dose and duration of administration are limited because of severe side effects. We therefore sought to identify an approach to selectively target GCs to inflamed tissue. Previous work identified that anti-tumor necrosis factor (TNF) antibodies that bind to transmembrane TNF undergo internalization; therefore, an anti-TNF antibody-drug conjugate (ADC) would be mechanistically similar, where lysosomal catabolism could release a GC receptor modulator (GRM) payload to dampen immune cell activity. Consequently, we have generated an anti-TNF-GRM ADC with the aim of inhibiting pro-inflammatory cytokine production from stimulated human immune cells. In an acute mouse model of contact hypersensitivity, a murine surrogate anti-TNF-GRM ADC inhibited inflammatory responses with minimal effect on systemic GC biomarkers. In addition, in a mouse model of collagen-induced arthritis, single-dose administration of the ADC, delivered at disease onset, was able to completely inhibit arthritis for greater than 30 days, whereas an anti-TNF monoclonal antibody only partially inhibited disease. ADC treatment at the peak of disease was also able to attenuate the arthritic phenotype. Clinical data for a human anti-TNF-GRM ADC (ABBV-3373) from a single ascending dose phase 1 study in healthy volunteers demonstrated antibody-like pharmacokinetic profiles and a lack of impact on serum cortisol concentrations at predicted therapeutic doses. These data suggest that an anti-TNF-GRM ADC may provide improved efficacy beyond anti-TNF alone in immune mediated diseases while minimizing systemic side effects associated with standard GC treatment.


Subject(s)
Antibodies , Arthritis, Experimental , Immunoconjugates , Steroids , Humans , Animals , Mice , Pharmaceutical Preparations , Receptors, Glucocorticoid/therapeutic use , Tumor Necrosis Factor Inhibitors/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use
2.
Rheumatology (Oxford) ; 63(2): 298-308, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37624925

ABSTRACT

Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Janus Kinase Inhibitors , Psoriasis , Humans , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Janus Kinases/metabolism , Psoriasis/drug therapy
3.
Clin Transl Sci ; 17(1): e13688, 2024 01.
Article in English | MEDLINE | ID: mdl-37984057

ABSTRACT

Upadacitinib is a selective Janus kinase (JAK) inhibitor which is approved by the US Food and Drug Administration, the European Medicines Agency, as well as other agencies around the world for the treatment of several chronic inflammatory diseases, including rheumatic, dermatologic, and gastrointestinal diseases. Through inhibition of JAK, upadacitinib inhibits phosphorylation of downstream effector proteins, which consequently inhibits cytokine signaling for key pathways involved in inflammatory diseases. Upadacitinib more potently inhibits JAK1 than other JAK isoforms. The pharmacokinetics, pharmacodynamics, efficacy, and safety of upadacitinib were characterized in many clinical trials, which demonstrated the superiority of upadacitinib treatment over placebo or an active comparator in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, non-radiographic axial spondyloarthritis, atopic dermatitis, Crohn's disease, and ulcerative colitis. The safety profile of upadacitinib supported a favorable benefit-risk profile across all the approved indications. In this article, we review the mechanism of action of upadacitinib and describe how the JAK-STAT (Janus kinase-signal transducers and activators of transcription) pathway is involved in the pathogenesis of several chronic and progressive immune-mediated inflammatory diseases. In addition, this review also provides an overview of key clinical trials that were conducted as well as relevant data which supported the clinical development of upadacitinib and informed the recommended dose(s) in each of the approved indications.


Subject(s)
Arthritis, Rheumatoid , Heterocyclic Compounds, 3-Ring , Janus Kinase Inhibitors , Spondylitis, Ankylosing , United States , Humans , Translational Science, Biomedical , Arthritis, Rheumatoid/drug therapy , Spondylitis, Ankylosing/drug therapy , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/therapeutic use
4.
J Med Chem ; 66(20): 14335-14356, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37823891

ABSTRACT

Tyrosine kinase 2 (TYK2) is a nonreceptor tyrosine kinase that belongs to the JAK family also comprising JAK1, JAK2, and JAK3. TYK2 is an attractive target for various autoimmune diseases as it regulates signal transduction downstream of IL-23 and IL-12 receptors. Selective TYK2 inhibition offers a differentiated clinical profile compared to currently approved JAK inhibitors. However, selectivity for TYK2 versus other JAK family members has been difficult to achieve with small molecules that inhibit the catalytically active kinase domain. Successful targeting of the TYK2 pseudokinase domain as a strategy to achieve isoform selectivity was recently exemplified with deucravacitinib. Described herein is the optimization of selective TYK2 inhibitors targeting the pseudokinase domain, resulting in the discovery of the clinical candidate ABBV-712 (21).


Subject(s)
Autoimmune Diseases , TYK2 Kinase , Humans , Janus Kinases
5.
J Allergy Clin Immunol ; 152(6): 1394-1404, 2023 12.
Article in English | MEDLINE | ID: mdl-37536511

ABSTRACT

Atopic dermatitis (AD) is a heterogeneous, chronic, relapsing, inflammatory skin disease associated with considerable physical, psychological, and economic burden. The pathology of AD includes complex interactions involving abnormalities in immune and skin barrier genes, skin barrier disruption, immune dysregulation, microbiome disturbance, and other environmental factors. Many of the cytokines involved in AD pathology, including IL-4, IL-13, IL-22, IL-31, thymic stromal lymphopoietin, and IFN-γ, signal through the Janus kinase (JAK)-signal transducer and activation of transcription (STAT) pathway. The JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2; the STAT family includes STAT1, STAT2, STAT3, STAT4, STAT5A/B, and STAT6. Activation of the JAK-STAT pathway has been implicated in the pathology of several immune-mediated inflammatory diseases, including AD. However, the exact mechanisms of JAK-STAT involvement in AD have not been fully characterized. This review aims to discuss current knowledge about the role of the JAK-STAT signaling pathway and, specifically, the role of JAK1 in the pathology and symptomology of AD.


Subject(s)
Dermatitis, Atopic , Janus Kinases , Humans , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Janus Kinase 1/metabolism , Cytokines/metabolism
6.
BMC Rheumatol ; 2: 23, 2018.
Article in English | MEDLINE | ID: mdl-30886973

ABSTRACT

BACKGROUND: Anti-cytokine therapies such as adalimumab, tocilizumab, and the small molecule JAK inhibitor tofacitinib have proven that cytokines and their subsequent downstream signaling processes are important in the pathogenesis of rheumatoid arthritis. Tofacitinib, a pan-JAK inhibitor, is the first approved JAK inhibitor for the treatment of RA and has been shown to be effective in managing disease. However, in phase 2 dose-ranging studies tofacitinib was associated with dose-limiting tolerability and safety issues such as anemia. Upadacitinib (ABT-494) is a selective JAK1 inhibitor that was engineered to address the hypothesis that greater JAK1 selectivity over other JAK family members will translate into a more favorable benefit:risk profile. Upadacitinib selectively targets JAK1 dependent disease drivers such as IL-6 and IFNγ, while reducing effects on reticulocytes and natural killer (NK) cells, which potentially contributed to the tolerability issues of tofacitinib. METHODS: Structure-based hypotheses were used to design the JAK1 selective inhibitor upadacitinib. JAK family selectivity was defined with in vitro assays including biochemical assessments, engineered cell lines, and cytokine stimulation. In vivo selectivity was defined by the efficacy of upadacitinib and tofacitinib in a rat adjuvant induced arthritis model, activity on reticulocyte deployment, and effect on circulating NK cells. The translation of the preclinical JAK1 selectivity was assessed in healthy volunteers using ex vivo stimulation with JAK-dependent cytokines. RESULTS: Here, we show the structural basis for the JAK1 selectivity of upadacitinib, along with the in vitro JAK family selectivity profile and subsequent in vivo physiological consequences. Upadacitinib is ~ 60 fold selective for JAK1 over JAK2, and > 100 fold selective over JAK3 in cellular assays. While both upadacitinib and tofacitinib demonstrated efficacy in a rat model of arthritis, the increased selectivity of upadacitinib for JAK1 resulted in a reduced effect on reticulocyte deployment and NK cell depletion relative to efficacy. Ex vivo pharmacodynamic data obtained from Phase I healthy volunteers confirmed the JAK1 selectivity of upadactinib in a clinical setting. CONCLUSIONS: The data presented here highlight the JAK1 selectivity of upadacinitinib and supports its use as an effective therapy for the treatment of RA with the potential for an improved benefit:risk profile.

7.
Oncotarget ; 7(42): 68278-68291, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27626702

ABSTRACT

Antibodies that target cell-surface molecules on T cells can enhance anti-tumor immune responses, resulting in sustained immune-mediated control of cancer. We set out to find new cancer immunotherapy targets by phenotypic screening on human regulatory T (Treg) cells and report the discovery of novel activators of tumor necrosis factor receptor 2 (TNFR2) and a potential role for this target in immunotherapy. A diverse phage display library was screened to find antibody mimetics with preferential binding to Treg cells, the most Treg-selective of which were all, without exception, found to bind specifically to TNFR2. A subset of these TNFR2 binders were found to agonise the receptor, inducing iκ-B degradation and NF-κB pathway signalling in vitro. TNFR2 was found to be expressed by tumor-infiltrating Treg cells, and to a lesser extent Teff cells, from three lung cancer patients, and a similar pattern was also observed in mice implanted with CT26 syngeneic tumors. In such animals, TNFR2-specific agonists inhibited tumor growth, enhanced tumor infiltration by CD8+ T cells and increased CD8+ T cell IFN-γ synthesis. Together, these data indicate a novel mechanism for TNF-α-independent TNFR2 agonism in cancer immunotherapy, and demonstrate the utility of target-agnostic screening in highlighting important targets during drug discovery.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Female , HEK293 Cells , Humans , Jurkat Cells , Mice, Inbred BALB C , NF-kappa B/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , Phenotype , Receptors, Tumor Necrosis Factor, Type II/agonists , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects
8.
Cancer Immunol Res ; 3(9): 1052-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25943534

ABSTRACT

Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Binding, Competitive , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Female , Humans , Lymphocyte Activation/drug effects , Lymphocyte Culture Test, Mixed , Melanoma/immunology , Melanoma/pathology , Melanoma/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Oncotarget ; 5(13): 4990-5001, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24970801

ABSTRACT

Diffuse large B cell lymphoma is generally treated by chemotherapy and there is an unmet medical need for novel targeted therapies or combination therapies. Using in vitro screening, we have identified the combination of ibrutinib, an inhibitor of the tyrosine kinase BTK, and AZD2014, an mTOR catalytic inhibitor, as being highly synergistic in killing ABC-subtype DLBCL cell lines. Simultaneous inhibition of BTK and mTOR causes apoptosis both in vitro and in vivo and results in tumor regression in a xenograft model. We identify two parallel mechanisms that underlie apoptosis in this setting: cooperative inhibition of cap-dependent translation, and the inhibition of an NF-κB/IL10/STAT3 autocrine loop. Combined disruption of these pathways is required for apoptosis. These data represent a rational basis for the dual inhibition of BTK and mTOR as a potential treatment for ABC-subtype DLBCL.


Subject(s)
Apoptosis/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Benzamides , Blotting, Western , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Female , HEK293 Cells , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice, SCID , Morpholines/pharmacology , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Piperidines , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptome/drug effects , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
10.
Public Health Nutr ; 16(1): 8-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22717028

ABSTRACT

OBJECTIVE: To investigate test-retest reliability of primary-school children's reports of food preferences and to investigate agreement with parental reports. DESIGN: Children completed an online test and retest, one to two weeks later, during school hours; parents completed a paper-and-pencil or an online questionnaire at home. The children's preferences questionnaire contained 148 food items, reduced to twelve scales; the parental questionnaire contained seventy-eight items reduced to nine scales. SETTING: Children of fourteen primary schools in Belgium-Flanders. SUBJECTS: In total 572 children participated; test-retest data were available for 354 children, children's tests could be matched to 362 parental reports. RESULTS: Test-retest intraclass correlations were on average 0.73, ranging between 0.62 and 0.86; correlations between children's and parents' reports were on average 0.50, ranging between 0.32 and 0.62. Retest preferences were significantly higher for more than half of the scales. Children reported higher preferences than their parents for milk & milk products, fruit and soft drinks, while parents reported higher preferences for bread & breakfast cereals, meat, snacks and sauces. CONCLUSIONS: The results indicate that the test-retest stability was good; however, agreement between parents and children was rather low to moderate.


Subject(s)
Diet , Food Preferences , Parents , Surveys and Questionnaires/standards , Adult , Belgium , Child , Computers , Humans , Reproducibility of Results
11.
Methods Mol Biol ; 907: 557-94, 2012.
Article in English | MEDLINE | ID: mdl-22907374

ABSTRACT

This chapter describes in vitro and in vivo methods to characterize a lead monoclonal antibody candidate in the drug discovery setting. Approaches to characterize monoclonal antibody specificity, heavy and light chain composition, and antibody mode of action including the ability to mediate secretion of effector molecules, inhibit cell proliferation, induce apoptosis, or elicit antibody effector function are described. ELISA and flow cytometry based methods, as well as in vitro assays to assess for cell proliferation, ADCC, and CDC are detailed.In addition, both subcutaneous and orthotopic in vivo tumor xenograft models to assess antibody efficacy are described. The xenograft tumor model is a valuable tool for assessing the therapeutic activity of a monoclonal antibody drug candidate. Xenograft models are generated by the implantation of tumor cells or tumor fragments of human origin into immune-compromised mice or rats. This allows for fast and efficient in vivo evaluation of an antibody drug candidate in human cancer models. Here, we describe the procedures for generating preclinical animal tumor models frequently employed in the preclinical drug discovery setting.


Subject(s)
Antibodies, Monoclonal/immunology , Molecular Biology/methods , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Apoptosis , Cell Proliferation , Complement System Proteins , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mice , Rats , Xenograft Model Antitumor Assays
12.
J Biol Chem ; 283(47): 32334-43, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18775810

ABSTRACT

The Janus-associated kinase 2 (JAK2) V617F mutation is believed to play a critical role in the pathogenesis of polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. We have characterized a novel small molecule JAK2 inhibitor, AZ960, and used it as a tool to investigate the consequences of JAK2 V617F inhibition in the SET-2 cell line. AZ960 inhibits JAK2 kinase with a K(i) of 0.00045 microm in vitro and treatment of TEL-JAK2 driven Ba/F3 cells with AZ960 blocked STAT5 phosphorylation and potently inhibited cell proliferation (GI(50)=0.025 microm). AZ960 demonstrated selectivity for TEL-JAK2-driven STAT5 phosphorylation and cell proliferation when compared with cell lines driven by similar fusions of the other JAK kinase family members. In the SET-2 human megakaryoblastic cell line, heterozygous for the JAK2 V617F allele, inhibition of JAK2 resulted in decreased STAT3/5 phosphorylation and inhibition of cell proliferation (GI(50)=0.033 microm) predominately through the induction of mitochondrial-mediated apoptosis. We provide evidence that JAK2 inhibition induces apoptosis by direct and indirect regulation of the anti-apoptotic protein BCL-xL. Inhibition of JAK2 blocked BCL-XL mRNA expression resulting in a reduction of BCL-xL protein levels. Additionally, inhibition of JAK2 resulted in decreased PIM1 and PIM2 mRNA expression. Decreased PIM1 mRNA corresponded with a decrease in Pim1 protein levels and inhibition of BAD phosphorylation at Ser(112). Finally, small interfering RNA-mediated suppression of BCL-xL resulted in apoptotic cell death similar to the phenotype observed following JAK2 inhibition. These results suggest a model in which JAK2 promotes cell survival by signaling through the Pim/BAD/BCL-xL pathway.


Subject(s)
Aminopyridines/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Janus Kinase 2/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , bcl-X Protein/metabolism , Apoptosis , Cell Line , Cell Line, Tumor , Cell Survival , Humans , Phenotype , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...