Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 254: 108618, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696327

ABSTRACT

Schistosomiasis is a major public health concern worldwide. Although praziquantel is currently available as the only treatment option for schistosomiasis, the absence of reliable diagnostic and prognostic tools highlights the need for the identification and characterization of new drug targets. Recently, we identified the B. glabrata homolog (accession number XP_013075832.1) of human CAXIV, showing 37% amino acid sequence identity, from a BLAST search in NCBI (National Center for Biotechnology Information). Carbonic Anhydrases (CAs) are metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. These enzymes are associated with many physiological processes, and their role in tumorigenesis has been widely implicated. CAs create an acidic extracellular environment that facilitates the survival, metastasis, and growth of cancer cells. In this study, we investigated the role of CA inhibition in B. glabrata snails exposed to S. mansoni miracidia. We analyzed the expression of the B. glabrata CA encoding transcript in juvenile susceptible and resistant snails, with and without exposure to S. mansoni. Our results showed that the expression of the CA mRNA encoding transcript was upregulated during early and prolonged infection in susceptible snails (BBO2), but not in the resistant BS-90 stock. Notably, sodium salicylate, a form of aspirin, inhibited the expression of CA, post-exposure, to the parasite. Increasing research between parasites and cancer has shown that schistosomes and cancer cells share similarities in their capacity to proliferate, survive, and evade host immune mechanisms. Here, we show that this model system is a potential new avenue for understanding the role of CA in the metastasis and proliferation of cancer cells. Further studies are needed to explore the potential of CA as a biomarker for infection in other schistosomiasis-causing parasites, including S. japonicum and S. haematobium.

2.
Immunoinformatics (Amst) ; 8: 100020, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36337685

ABSTRACT

The Omicron (BA.1/B.1.1.529) variant of SARS-CoV-2 harbors an alarming 37 mutations on its spike protein, reducing the efficacy of current COVID-19 vaccines. In this study, we identified CD8+ and CD4+ T cell epitopes from SARS-CoV-2 S protein mutants. To identify the highest quality CD8 and CD4 epitopes from the Omicron variant, we selected epitopes with a high binding affinity towards both MHC I and MHC II molecules. We applied other clinical checkpoint predictors, including immunogenicity, antigenicity, allergenicity, instability and toxicity. Subsequently, we found eight Omicron (BA.1/B.1.1.529) specific CD8+ and eleven CD4+ T cell epitopes with a world population coverage of 76.16% and 97.46%, respectively. Additionally, we identified common epitopes across Omicron BA.1 and BA.2 lineages that target mutations critical to SARS-CoV-2 virulence. Further, we identified common epitopes across B.1.1.529 and other circulating SARS-CoV-2 variants, such as B.1.617.2 (Delta). We predicted CD8 epitopes' binding affinity to murine MHC alleles to test the vaccine candidates in preclinical models. The CD8 epitopes were further validated using our previously developed software tool PCOptim. We then modeled the three-dimensional structures of our top CD8 epitopes to investigate the binding interaction between peptide-MHC and peptide-MHC-TCR complexes. Notably, our identified epitopes are targeting the mutations on the RNA-binding domain and the fusion sites of S protein. This could potentially eliminate viral infections and form long-term immune responses compared to relatively short-lived mRNA vaccines and maximize the efficacy of vaccine candidates against the current pandemic and potential future variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...