Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 118(1-2): 55-61, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16387382

ABSTRACT

White Spot Syndrome Virus (WSSV) is a highly pathogenic and prevalent virus affecting crustacea. A number of WSSV envelope proteins, including vp28, have been proposed to be involved in viral infectivity based on the ability of specific antibodies to attenuate WSSV-induced mortality in vivo. In the present study, a series of monoclonal and polyclonal antibodies targeting vp28 were tested for their ability to neutralize WSSV infectivity, with the purpose of identifying epitopes potentially involved in vp28-mediated infection of shrimp. Surprisingly, when used as protein A-purified immunoglobulin, none of the antibodies tested were capable of inhibiting WSSV infectivity. This included one polyclonal preparation that has been previously shown to inactivate WSSV, when used as whole rabbit serum. Moreover, strong inactivation of WSSV by some rabbit sera was observed, in a manner independent of anti-vp28 antibodies. These results underscore the problems associated with using heterogeneous reagents (e.g. whole rabbit antiserum) in viral neutralization experiments aimed at defining proteins involved in infection by WSSV. In light of this, the potential of anti-vp28 antibodies to specifically neutralize WSSV should be reconsidered.


Subject(s)
Penaeidae/virology , Serum/physiology , Viral Envelope Proteins/physiology , Virus Inactivation , White spot syndrome virus 1 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Neutralization Tests , Rabbits
2.
Comp Med ; 55(4): 382-6, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16158914

ABSTRACT

In 1997, three lines of inbred Peromyscus leucopus--GS109A, GS16A1, and GS16B--were acquired by the Peromyscus Genetic Stock Center. Since then, records have been kept on tumors detected by visible inspection of live animals. The inbred lines GS109A and GS16A1 presented tumors with frequencies substantially higher than that of the other inbred line or of random-bred P. leucopus stock. The average age of detection was 456 +/- 75 days (n = 24) for GS109A and 568 +/- 168 days (n = 12) for GS16A1 respectively. Surprisingly, the majority of the tumors (23 of 24 for GS109A and 8 of 12 for GS16A1) appeared to be Harderian gland lesions. During the same time period only a single tumor, a fibrosarcoma, was noted in the other inbred strain (GS16B), and one Harderian gland tumor was detected in the random bred stock. On the basis of the number of animals born to each group, tumor frequencies were approximately 22.7%, 8.3%, 0.67%, and 0.07%, for GS109A, GS16A1, GS16B, and randombred P. leucopus stock, respectively. The periocular tumors appeared to be highly malignant, with elevated mitotic indices, marked anaplasia, and metastases to regional lymph nodes and lungs. The tumors were readily transplantable to other animals of the same line. Among various other species, malignant Harderian gland tumors are relatively rare.


Subject(s)
Adenocarcinoma/veterinary , Eye Neoplasms/veterinary , Harderian Gland/pathology , Peromyscus , Rodent Diseases/pathology , Adenocarcinoma/epidemiology , Adenocarcinoma/pathology , Animals , Eye Neoplasms/epidemiology , Eye Neoplasms/pathology , Prevalence , Rodent Diseases/epidemiology , Rodentia , Species Specificity , Staining and Labeling
3.
J Appl Toxicol ; 25(5): 339-53, 2005.
Article in English | MEDLINE | ID: mdl-16013040

ABSTRACT

The two major pathways for the metabolism of estradiol-17beta (E2) are the 2- and 16-hydroxylase pathways. Research has suggested that the increased production of the estrogenically active 16-hydroxy products such as estriol (E3) may be involved in increased susceptibility to breast cancer. 4-Nonylphenol (4-NP) is an environmental estrogen that also can activate the pregnane-X receptor (PXR) and induce P-450 enzymes responsible for the production of E3. It is hypothesized that 4-NP may act in part as an environmental estrogen by increasing E3 production. Based on its affinity for the estrogen receptor (ER) alone, 4-NP may be more potent than predicted at increasing mammary cancer incidence in the MMTVneu mouse. Female mice were treated per os for 7 days at 0, 25, 50 or 75 mg kg(-1) day(-1) 4-NP to investigate the effects of 4-NP on hepatic estrogen metabolism after an acute treatment. 4-Nonylphenol increased the hepatic formation of E3 in a dose-dependent manner. However, serum E3 concentrations were only increased at 25 mg kg(-1) day(-1) presumably due to direct inhibition of E3 formation by 4-NP. MMTVneu mice were then treated for 32 weeks at 0, 30 or 45 mg kg(-1) day(-1) 4-NP to determine its effects on mammary cancer formation and estrogen metabolism. 4-Nonylphenol increased mammary cancer formation in the MMTVneu mice at 45 mg kg(-1) day(-1) but not at 30 mg kg(-1) day(-1). Mice treated with an equipotent dose of E2, 10 microg kg(-1) day(-1), based on the relative binding affinities of nonylphenol and estradiol for ER alpha, did not develop mammary cancer. This suggests that nonylphenol is more potent than predicted based on its affinity for the estrogen receptor. However, no changes in serum E3 concentrations or hepatic E3 production were measured after the chronic treatment. Changes in E3 formation were correlated with increased CYP2B levels after the 7 day 4-NP treatment, and repression of CYP2B and CYP3A after 32 weeks of 4-NP treatment. Microarray analysis and Q-PCR of liver mRNA from the mice treated for 32 weeks demonstrated a decrease in RXR alpha, the heterodimeric partner of the PXR, which may in part explain the repressed transcription of the P450s measured. In conclusion, 4-NP treatment for 32 weeks increased mammary cancer formation at a dose of 45 mg kg(-1) day(-1). However, chronic treatment with 4-NP did not increase hepatic E3 formation or serum E3 concentrations. The transient induction by 4-NP of hepatic E3 formation and serum concentrations is most likely not involved in the increased incidence of mammary cancer in MMTVneu mice since E3 serum concentrations were only increased at 25 mg kg(-1) day(-1), a dose that was not sufficient to induce mammary tumor formation. Nevertheless, the induced hepatic E3 production in the acute exposures to 4-NP was indicative of an increase in mammary cancer incidence after the chronic exposure.


Subject(s)
Estradiol/metabolism , Estriol/metabolism , Estrogens, Non-Steroidal/pharmacology , Liver/metabolism , Mammary Neoplasms, Animal/chemically induced , Mammary Neoplasms, Animal/epidemiology , Phenols/pharmacology , Steroids/metabolism , Animals , Blotting, Western , Estradiol/blood , Estriol/blood , Female , Liver/pathology , Lung/metabolism , Lung/pathology , Mammary Neoplasms, Animal/pathology , Mice , Mice, Inbred Strains , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Testosterone/metabolism
4.
J Wildl Dis ; 40(3): 485-92, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15465716

ABSTRACT

Avian vacuolar myelinopathy (AVM) is a neurologic disease primarily affecting bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). The disease was first characterized in bald eagles in Arkansas in 1994 and then in American coots in 1996. To date, AVM has been confirmed in six additional avian species. Attempts to identify the etiology of AVM have been unsuccessful to date. The objective of this study was to evaluate dermal and oral routes of exposure of birds to hydrilla (Hydrilla verticillata) and associated materials to evaluate their ability to induce AVM. Mallards (Anas platyrhynchos) were used in all trials; bobwhite quail (Colinus virginianus) also were used in one fresh hydrilla material exposure trial. Five trials were conducted, including two fresh hydrilla material exposure trials, two cyanobacteria exposure trials, and a frozen hydrilla material exposure trial. The cyanobacteria exposure trials and frozen hydrilla material trial involved gavaging mallards with either Pseudanabaena catenata (live culture), Hapalosiphon fontinalis, or frozen hydrilla material with both cyanobacteria species present. With the exception of one fresh hydrilla exposure trial, results were negative or inconclusive. In the 2002 hydrilla material exposure trial, six of nine treated ducks had histologic lesions of AVM. This established the first cause-effect link between aquatic vegetation and AVM and provided evidence supporting an aquatic source for the causal agent.


Subject(s)
Bird Diseases/etiology , Central Nervous System Diseases/veterinary , Ducks , Food Contamination , Hydrocharitaceae/adverse effects , Quail , Administration, Oral , Animal Feed , Animals , Bird Diseases/pathology , Brain/pathology , Central Nervous System Diseases/etiology , Central Nervous System Diseases/pathology , Food Chain , Food Contamination/analysis , Fresh Water , Male , Myelin Sheath/pathology , Random Allocation , Vacuoles
5.
J Virol ; 78(19): 10442-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367610

ABSTRACT

Vertebrates mount a strong innate immune response against viruses, largely by activating the interferon system. Double-stranded RNA (dsRNA), a common intermediate formed during the life cycle of many viruses, is a potent trigger of this response. In contrast, no general inducible antiviral defense mechanism has been reported in any invertebrate. Here we show that dsRNA induces antiviral protection in the marine crustacean Litopenaeus vannamei. When treated with dsRNA, shrimp showed increased resistance to infection by two unrelated viruses, white spot syndrome virus and Taura syndrome virus. Induction of this antiviral state is independent of the sequence of the dsRNA used and therefore distinct from the sequence-specific dsRNA-mediated genetic interference phenomenon. This demonstrates for the first time that an invertebrate immune system, like its vertebrate counterparts, can recognize dsRNA as a virus-associated molecular pattern, resulting in the activation of an innate antiviral response.


Subject(s)
DNA Viruses/immunology , Penaeidae/immunology , Penaeidae/virology , RNA Viruses/immunology , RNA, Double-Stranded/immunology , Animals , DNA Viruses/physiology , Poly C/immunology , Poly G/immunology , Poly I-C/immunology , RNA Viruses/physiology
6.
Dis Aquat Organ ; 54(2): 89-96, 2003 Mar 31.
Article in English | MEDLINE | ID: mdl-12747634

ABSTRACT

In vivo bioassay is the predominant method for evaluating the infectivity of materials potentially harboring viable shrimp pathogens and determining the relative susceptibility of shrimp species to viral infections. A controlled bioassay system for white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) was developed utilizing 260 ml tissue culture flasks modified with an air exchange vent. Individual shrimp (1.00 +/- 0.25 g) were placed in separate flasks containing artificial seawater (100 to 150 ml) and held in an incubator at 27 degrees C. After a 48 h acclimation period, shrimp were either injected intramuscularly with viral inoculum or exposed to virus-laden water. Water was exchanged and shrimp were fed a commercial food pellet daily except 24 h post-infection (p.i.). Bioassays were performed with serial dilutions of stock viral preparations and shrimp mortality was recorded for 7 d p.i. Mortality rates of test animals permitted the estimation of the lethal infective doses, LD50 and LD90. The LD50 of the TSV injection preparation was estimated at viral dilutions of 1:7.692 x 10(7) (Trial 1) and 1:6.667 x 10(7) (Trial 2). The LD50s of 2 different WSSV injection preparations were estimated at 1:4.444 x 10(6) and 1:4.505 x 10(6). The LD50 for the TSV waterborne challenge was 1:9916 (Trial 1) and 1:15 710 (Trial 2) at 20 degrees C and 1:1272 at 27 degrees C. A second waterborne TSV inoculum challenge at 27 degrees C produced an LD50 of 1:2857. WSSV doses used in the waterborne challenge only reached 39% mortality, which did not allow for the estimation of effective lethal doses. Bioassay by injection proved to be a more reliable method of estimating viral infectivity compared to waterborne method. The dose-response curves developed can serve as a basis for controlled comparisons of relative levels of viral infectivity of specific tissue preparations and for controlled comparisons of relative susceptibility of shrimp species or stocks to viral pathogens.


Subject(s)
DNA Viruses/pathogenicity , Penaeidae/virology , RNA Viruses/pathogenicity , Animals , Aquaculture , Biological Assay/veterinary , Injections, Intramuscular/veterinary , Lethal Dose 50 , Mortality , Specific Pathogen-Free Organisms , Syndrome , Viral Load , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...