Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
JASA Express Lett ; 3(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37382509

ABSTRACT

An active cloaking strategy for the scalar Helmholtz equation in three dimensions is developed by placing active sources at the vertices of Platonic solids. In each case, a "silent zone" is created interior to the Platonic solid and only the incident field remains in a defined region exterior to this zone. This distribution of sources ensures that implementation of the cloaking strategy is efficient: once the multipole source amplitudes at a single source location are determined, the other amplitudes are calculated by multiplying the multipole source vector by a rotation matrix. The technique is relevant to any scalar wave field.


Subject(s)
Head , Rotation
3.
Proc Math Phys Eng Sci ; 478(2263): 20220026, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35811638

ABSTRACT

The giant monopole resonance is a well-known phenomenon, employed to tune the dynamic response of composite materials comprising voids in an elastic matrix which has a bulk modulus much greater than its shear modulus, e.g. elastomers. This low frequency resonance (e.g. λ p / a ≈ 100 for standard elastomers, where λ p and a are the compressional wavelength and void radius, respectively) has motivated acoustic material design over many decades, exploiting the subwavelength regime. Despite this widespread use, the manner by which the resonance arising from voids in close proximity is affected by their interaction is not understood. Here, we illustrate that for planar elastodynamics (circular cylindrical voids), coupling due to near-field shear significantly modifies the monopole (compressional) resonant response. We show that by modifying the number and configuration of voids in a metacluster, the directionality, scattering amplitude and resonant frequency can be tailored and tuned. Perhaps most notably, metaclusters deliver a lower frequency resonance than a single void. For example, two touching voids deliver a reduction in resonant frequency of almost 16% compared with a single void of the same volume. Combined with other resonators, such metaclusters can be used as meta-atoms in the design of elastic materials with exotic dynamic material properties.

4.
J R Soc Interface ; 19(190): 20220031, 2022 05.
Article in English | MEDLINE | ID: mdl-35582809

ABSTRACT

Microstructural models of soft-tissue deformation are important in applications including artificial tissue design and surgical planning. The basis of these models, and their advantage over their phenomenological counterparts, is that they incorporate parameters that are directly linked to the tissue's microscale structure and constitutive behaviour and can therefore be used to predict the effects of structural changes to the tissue. Although studies have attempted to determine such parameters using diverse, state-of-the-art, experimental techniques, values ranging over several orders of magnitude have been reported, leading to uncertainty in the true parameter values and creating a need for models that can handle such uncertainty. We derive a new microstructural, hyperelastic model for transversely isotropic soft tissues and use it to model the mechanical behaviour of tendons. To account for parameter uncertainty, we employ a Bayesian approach and apply an adaptive Markov chain Monte Carlo algorithm to determine posterior probability distributions for the model parameters. The obtained posterior distributions are consistent with parameter measurements previously reported and enable us to quantify the uncertainty in their values for each tendon sample that was modelled. This approach could serve as a prototype for quantifying parameter uncertainty in other soft tissues.


Subject(s)
Tendons , Bayes Theorem , Markov Chains , Monte Carlo Method , Uncertainty
5.
Proc Math Phys Eng Sci ; 476(2240): 20190725, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32922148

ABSTRACT

New connections between static elastic cloaking, low-frequency elastic wave scattering and neutral inclusions (NIs) are established in the context of two-dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low-frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core-shell composite cylinder as a neutral elastic inclusion. Two types of NI are distinguished, weak and strong with the former equivalent to low-frequency transparency and the classical Christensen and Lo generalized self-consistent result for in-plane shear from 1979. Our introduction of the strong NI is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed 'unphysical' materials. The relationships between low-frequency transparency, static cloaking and NIs provide the material designer with options for achieving elastic cloaking in the quasi-static limit.

6.
J Biomech Eng ; 142(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-34043761

ABSTRACT

Soft tissues exhibit complex viscoelastic behavior, including strain-rate dependence, hysteresis, and strain-dependent relaxation. In this paper, a model for soft tissue viscoelasticity is developed that captures all of these features and is based upon collagen recruitment, whereby fibrils contribute to tissue stiffness only when taut. We build upon existing recruitment models by additionally accounting for fibril creep and by explicitly modeling the contribution of the matrix to the overall tissue viscoelasticity. The fibrils and matrix are modeled as linear viscoelastic and each fibril has an associated critical strain (corresponding to its length) at which it becomes taut. The model is used to fit relaxation tests on three rat tail tendon fascicles and predict their response to cyclic loading. It is shown that all of these mechanical tests can be reproduced accurately with a single set of constitutive parameters, the only difference between each fascicle being the distribution of their fibril crimp lengths. By accounting for fibril creep, we are able to predict how the fibril length distribution of a fascicle changes over time under a given deformation. Furthermore, the phenomenon of strain-dependent relaxation is explained as arising from the competition between the fibril and matrix relaxation functions.


Subject(s)
Tendons , Animals , Elasticity , Rats , Stress, Mechanical , Viscosity
7.
Proc Math Phys Eng Sci ; 475(2229): 20190344, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31611729

ABSTRACT

Effective medium theory aims to describe a complex inhomogeneous material in terms of a few important macroscopic parameters. To characterize wave propagation through an inhomogeneous material, the most crucial parameter is the effective wavenumber. For this reason, there are many published studies on how to calculate a single effective wavenumber. Here, we present a proof that there does not exist a unique effective wavenumber; instead, there are an infinite number of such (complex) wavenumbers. We show that in most parameter regimes only a small number of these effective wavenumbers make a significant contribution to the wave field. However, to accurately calculate the reflection and transmission coefficients, a large number of the (highly attenuating) effective waves is required. For clarity, we present results for scalar (acoustic) waves for a two-dimensional material filled (over a half-space) with randomly distributed circular cylindrical inclusions. We calculate the effective medium by ensemble averaging over all possible inhomogeneities. The proof is based on the application of the Wiener-Hopf technique and makes no assumption on the wavelength, particle boundary conditions/size or volume fraction. This technique provides a simple formula for the reflection coefficient, which can be explicitly evaluated for monopole scatterers. We compare results with an alternative numerical matching method.

8.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180072, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30879414

ABSTRACT

The small amplitude dynamic response of materials can be tuned by employing inhomogeneous materials capable of large deformation. However, soft materials generally exhibit viscoelastic behaviour, i.e. loss and frequency-dependent effective properties. This is the case for inhomogeneous materials even in the homogenization limit when propagating wavelengths are much longer than phase lengthscales, since soft materials can possess long relaxation times. These media, possessing rich frequency-dependent behaviour over a wide range of low frequencies, can be termed metamaterials in modern terminology. The sub-class that are periodic are frequently termed soft phononic crystals although their strong dynamic behaviour usually depends on wavelengths being of the same order as the microstructure. In this paper we describe how the effective loss and storage moduli associated with longitudinal waves in thin inhomogeneous rods are tuned by pre-stress. Phases are assumed to be quasi-linearly viscoelastic, thus exhibiting time-deformation separability in their constitutive response. We illustrate however that the effective incremental response of the inhomogeneous medium does not exhibit time-deformation separability. For a range of nonlinear materials it is shown that there is strong coupling between the frequency of the small amplitude longitudinal wave and initial large deformation. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.

9.
Proc Math Phys Eng Sci ; 474(2217): 20180231, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30333704

ABSTRACT

The theory of quasi-linear viscoelasticity (QLV) is modified and developed for transversely isotropic (TI) materials under finite deformation. For the first time, distinct relaxation responses are incorporated into an integral formulation of nonlinear viscoelasticity, according to the physical mode of deformation. The theory is consistent with linear viscoelasticity in the small strain limit and makes use of relaxation functions that can be determined from small-strain experiments, given the time/deformation separability assumption. After considering the general constitutive form applicable to compressible materials, attention is restricted to incompressible media. This enables a compact form for the constitutive relation to be derived, which is used to illustrate the behaviour of the model under three key deformations: uniaxial extension, transverse shear and longitudinal shear. Finally, it is demonstrated that the Poynting effect is present in TI, neo-Hookean, modified QLV materials under transverse shear, in contrast to neo-Hookean elastic materials subjected to the same deformation. Its presence is explained by the anisotropic relaxation response of the medium.

10.
Proc Math Phys Eng Sci ; 474(2213): 20180268, 2018 05.
Article in English | MEDLINE | ID: mdl-29887755

ABSTRACT

[This corrects the article DOI: 10.1098/rspa.2015.0450.].

11.
J Acoust Soc Am ; 143(5): 2878, 2018 May.
Article in English | MEDLINE | ID: mdl-29857758

ABSTRACT

Hyperelastic materials possess the appealing property that they may be employed as elastic wave manipulation devices and cloaks by imposing pre-deformation. They provide an alternative to microstructured metamaterials and can be used in a reconfigurable manner. Previous studies indicate that exact elastodynamic invariance to pre-deformation holds only for neo-Hookean solids in the antiplane wave scenario and the semi-linear material in the in-plane compressional/shear wave context. Furthermore, although ground cloaks have been considered in the acoustic context they have not yet been discussed for elastodynamics, either by employing microstructured cloaks or hyperelastic cloaks. This work therefore aims at exploring the possibility of employing a range of hyperelastic materials for use as antiplane ground cloaks (AGCs). The use of the popular incompressible Arruda-Boyce and Mooney-Rivlin nonlinear materials is explored. The scattering problem associated with the AGC is simulated via finite element analysis where the cloaked region is formed by an indentation of the surface. Results demonstrate that the neo-Hookean medium can be used to generate a perfect hyperelastic AGC as should be expected. Furthermore, although the AGC performance of the Mooney-Rivlin material is not particularly satisfactory, it is shown that the Arruda-Boyce medium is an excellent candidate material for this purpose.

12.
Proc Math Phys Eng Sci ; 474(2212): 20170864, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29740262

ABSTRACT

We formally deduce closed-form expressions for the transmitted effective wavenumber of a material comprising multiple types of inclusions or particles (multi-species), dispersed in a uniform background medium. The expressions, derived here for the first time, are valid for moderate volume fractions and without restriction on the frequency. We show that the multi-species effective wavenumber is not a straightforward extension of expressions for a single species. Comparisons are drawn with state-of-the-art models in acoustics by presenting numerical results for a concrete and a water-oil emulsion in two dimensions. The limit of when one species is much smaller than the other is also discussed and we determine the background medium felt by the larger species in this limit. Surprisingly, we show that the answer is not the intuitive result predicted by self-consistent multiple scattering theories. The derivation presented here applies to the scalar wave equation with cylindrical or spherical inclusions, with any distribution of sizes, densities and wave speeds. The reflection coefficient associated with a halfspace of multi-species cylindrical inclusions is also formally derived.

13.
J Acoust Soc Am ; 144(6): 3421, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599677

ABSTRACT

Recent work in the acoustic metamaterial literature has focused on the design of metasurfaces that are capable of absorbing sound almost perfectly in narrow frequency ranges by coupling resonant effects to visco-thermal damping within their microstructure. Understanding acoustic attenuation mechanisms in narrow, viscous-fluid-filled channels is of fundamental importance in such applications. Motivated by recent work on acoustic propagation in narrow, air-filled channels, a theoretical framework is presented that demonstrates the controlling mechanisms of acoustic propagation in arbitrary Newtonian fluids, focusing on attenuation in air and water. For rigid-walled channels, whose widths are on the order of Stokes's boundary layer thickness, attenuation in air at 10 kHz can be over 200 dB m-1; in water it is less than 37 dB m-1. However, in water, fluid-structure-interaction effects can increase attenuation dramatically to over 77 dB m-1 for a steel-walled channel, with a reduction in phase-speed approaching 70%. For rigid-walled channels, approximate analytical expressions for dispersion relations are presented that are in close agreement with exact solutions over a broad range of frequencies, revealing explicitly the relationship between complex phase-speed, frequency and channel width.

14.
Proc Math Phys Eng Sci ; 473(2201): 20170080, 2017 May.
Article in English | MEDLINE | ID: mdl-28588412

ABSTRACT

In Parnell & Abrahams (2008 Proc. R. Soc. A464, 1461-1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.

15.
Proc Math Phys Eng Sci ; 473(2200): 20160865, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28484331

ABSTRACT

Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation.

16.
J Eng Math ; 107(1): 283-303, 2017.
Article in English | MEDLINE | ID: mdl-32009674

ABSTRACT

Understanding the fields that are set up in and around inhomogeneities is of great importance in order to predict the manner in which heterogeneous media behave when subjected to applied loads or other fields, e.g., magnetic, electric, thermal, etc. The classical inhomogeneity problem of an ellipsoid embedded in an unbounded host or matrix medium has long been studied but is perhaps most associated with the name of Eshelby due to his seminal work in 1957, where in the context of the linear elasticity problem, he showed that for imposed far fields that correspond to uniform strains, the strain field induced inside the ellipsoid is also uniform. In Eshelby's language, this corresponds to requiring a uniform eigenstrain in order to account for the presence of the ellipsoidal inhomogeneity, and the so-called Eshelby tensor arises, which is also uniform for ellipsoids. Since then, the Eshelby tensor has been determined by many authors for inhomogeneities of various shapes, but almost always for the case of uniform eigenstrains. In many application areas in fact, the case of non-uniform eigenstrains is of more physical significance, particularly when the inhomogeneity is non-ellipsoidal. In this article, a method is introduced, which approximates the Eshelby tensor for a variety of shaped inhomogeneities in the case of more complex eigenstrains by employing local polynomial expansions of both the eigenstrain and the resulting Eshelby tensor, in the case of the potential problem in two dimensions.

17.
Int J Fract ; 204(1): 115-120, 2017.
Article in English | MEDLINE | ID: mdl-32269409

ABSTRACT

In this paper the influence of mechanical and geometrical properties, both deterministic and stochastic in nature, of a heterogeneous periodic composite material on wave propagation has been analysed in terms of the occurrence of stop-bands. Numerical analyses have been used to identify those parameters that have the most significant effect on the wave filtering properties of the medium. A striking conclusion is that randomness in geometrical properties has a much larger effect than randomness in mechanical properties.

18.
Proc Math Phys Eng Sci ; 471(2182): 20150450, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26543398

ABSTRACT

The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney-Rivlin and a two-term Arruda-Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney-Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda-Boyce material, both inflation and deflation are found to decrease the scattered power.

19.
Acta Biomater ; 12: 207-215, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25462527

ABSTRACT

An evidence gap exists in fully understanding and reliably modeling the variations in elastic anisotropy that are observed at the millimeter scale in human cortical bone. The porosity (pore volume fraction) is known to account for a large part, but not all, of the elasticity variations. This effect may be modeled by a two-phase micromechanical model consisting of a homogeneous matrix pervaded by cylindrical pores. Although this model has been widely used, it lacks experimental validation. The aim of the present work is to revisit experimental data (elastic coefficients, porosity) previously obtained from 21 cortical bone specimens from the femoral mid-diaphysis of 10 donors and test the validity of the model by proposing a detailed discussion of its hypotheses. This includes investigating to what extent the experimental uncertainties, pore network modeling, and matrix elastic properties influence the model's predictions. The results support the validity of the two-phase model of cortical bone which assumes that the essential source of variations of elastic properties at the millimeter-scale is the volume fraction of vascular porosity. We propose that the bulk of the remaining discrepancies between predicted stiffness coefficients and experimental data (RMSE between 6% and 9%) is in part due to experimental errors and part due to small variations of the extravascular matrix properties. More significantly, although most of the models that have been proposed for cortical bone were based on several homogenization steps and a large number of variable parameters, we show that a model with a single parameter, namely the volume fraction of vascular porosity, is a suitable representation for cortical bone. The results could provide a guide to build specimen-specific cortical bone models. This will be of interest to analyze the structure-function relationship in bone and to design bone-mimicking materials.


Subject(s)
Bone and Bones/physiology , Elasticity , Models, Theoretical , Porosity
20.
Proc Math Phys Eng Sci ; 470(2166): 20140058, 2014 Jun 08.
Article in English | MEDLINE | ID: mdl-24910527

ABSTRACT

This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan-Murphy and Gent.

SELECTION OF CITATIONS
SEARCH DETAIL
...