Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35564160

ABSTRACT

A colorimetric probe based on a hybrid sensing system of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and thymine (Thy) was developed for easy and rapid detection of copper (II) ions (Cu2+) in solution. The underlying principle of this probe was the Cu2+-triggered aggregation of the nanoparticle components. Color change of the sensing solution (from red to purple) was clearly observed with naked eyes. The experimental parameters, including pH and concentration of tris buffer, thymine concentration and AgNP dilution ratios, were investigated and optimized. Once optimized, the limits of detection were found to be 1, 0.09 and 0.03 ppm for naked eyes, smartphone application and UV-vis spectrophotometer, respectively. Furthermore, determination of Cu2+ was accomplished within 15 min under ambient conditions. For quantitative analysis, the linearity of detection was observed through ranges of 0.09−0.5 and 0.03−0.5 ppm using smartphone application and UV-vis spectrophotometer, respectively, conforming to the World Health Organization guideline for detection of copper at concentrations < 2 ppm in water. This developed hybrid colorimetric probe exhibited preferential selectivity toward Cu2+, even when assessed in the presence of other metal ions (Al3+, Ca2+, Pb2+, Mn2+, Mg2+, Zn2+, Fe3+, Ni2+, Co2+, Hg2+ and Cd2+). The developed procedure was also successfully applied to quantification of Cu2+ in real water samples. The recovery and relative standard deviation (RSD) values from real water sample analysis were in the ranges of 70.14−103.59 and 3.21−17.63%, respectively. Our findings demonstrated a successful development and implementation of the Thy-AuNP-AgNP hybrid sensing system for rapid, simple and portable Cu2+ detection in water samples using a spectrophotometer or a smartphone-based device.

2.
Nanomaterials (Basel) ; 9(6)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31197110

ABSTRACT

Smart materials with light-actuated shape memory effects are developed from renewable resources in this work. Bio-based benzoxazine resin is prepared from vanillin, furfurylamine, and paraformaldehyde by utilizing the Mannich-like condensation. Vanillin-furfurylamine-containing benzoxazine resin (V-fa) is subsequently copolymerized with epoxidized castor oil (ECO). When the copolymer is reinforced with multiwalled carbon nanotubes (MWCNTs), the resulting composite exhibits shape memory effects. Molecular characteristics of V-fa resin, ECO, and V-fa/ECO copolymers are obtained from Fourier transform infrared (FT-IR) spectroscopy. Curing behavior of V-fa/ECO copolymers is investigated by differential scanning calorimetry. Dynamic mechanical properties of MWCNT reinforced V-fa/ECO composites are determined by dynamic mechanical analysis. Morphological details and distribution of MWCNTs within the copolymer matrix are characterized by transmission electron microscopy. Shape memory performances of MWCNT reinforced V-fa/ECO composites are studied by shape memory tests performed with a universal testing machine. After a significant deformation to a temporary shape, the composites can be recovered to the original shape by near-infrared (NIR) laser actuation. The shape recovery process can be stimulated at a specific site of the composite simply by focusing NIR laser to that site. The shape recovery time of the composites under NIR actuation is four times faster than the shape recovery process under conventional thermal activation. Furthermore, the composites possess good shape fixity and good shape recovery under NIR actuation.

3.
J Struct Biol ; 191(2): 184-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26101173

ABSTRACT

An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed.


Subject(s)
Animal Shells/ultrastructure , Calcium Carbonate/chemistry , Color , Perna/ultrastructure , Animal Shells/chemistry , Animals , Light , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Perna/anatomy & histology
4.
Phys Chem Chem Phys ; 15(12): 4183-9, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23247770

ABSTRACT

The study on the shape evolution of metal nanoparticles (MNPs) is crucial to gain an understanding on controlling the shape and size of metal nanostructures. In this work, a detailed study on shape evolution of silver (Ag) nanospheres to nanoplates induced by hydrogen peroxide (H2O2) was performed. According to the growth mechanism of Ag nanoplates, the spectrophotometric method combined with chemometric analysis has potential to reveal the structural evolution process as observed by surface plasmon resonance phenomena. The extinction spectra of the evolving nanostructures were analyzed by factor analysis and error indicator functions. Five major components attributed to the different particle shapes and sizes were theoretically predicted. Furthermore, the concentration profiles and pure spectra of these components were resolved using multivariate curve resolution-alternative least squares (MCR-ALS) analysis. The evolution profiles show that the spherical Ag particles systematically evolved into plate structures of different sizes. Larger nanoplates were obtained when higher concentrations of H2O2 were employed. An evidence of nanoplate disintegration was observed when a large amount of H2O2 was employed. The predicted structural morphologies of each component given by chemometric calculation were in excellent agreement with those observed by transmission electron microscope (TEM) images.

SELECTION OF CITATIONS
SEARCH DETAIL
...