Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 70, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218968

ABSTRACT

Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2 drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Using in-situ measurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements.

2.
Sci Rep ; 11(1): 10875, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035322

ABSTRACT

The SARS-CoV-2 virus is responsible for the novel coronavirus disease 2019 (COVID-19), which has spread to populations throughout the continental United States. Most state and local governments have adopted some level of "social distancing" policy, but infections have continued to spread despite these efforts. Absent a vaccine, authorities have few other tools by which to mitigate further spread of the virus. This begs the question of how effective social policy really is at reducing new infections that, left alone, could potentially overwhelm the existing hospitalization capacity of many states. We developed a mathematical model that captures correlations between some state-level "social distancing" policies and infection kinetics for all U.S. states, and use it to illustrate the link between social policy decisions, disease dynamics, and an effective reproduction number that changes over time, for case studies of Massachusetts, New Jersey, and Washington states. In general, our findings indicate that the potential for second waves of infection, which result after reopening states without an increase to immunity, can be mitigated by a return of social distancing policies as soon as possible after the waves are detected.


Subject(s)
COVID-19/epidemiology , Health Policy , COVID-19/pathology , COVID-19/virology , Databases, Factual , Humans , Massachusetts/epidemiology , New Jersey/epidemiology , Physical Distancing , Public Policy , SARS-CoV-2/isolation & purification , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...