Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Biol Res ; 57(1): 2, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191441

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
COVID-19 , Interferon Type I , SARS-CoV-2 , alpha-Synuclein , Endothelial Cells , Humans , Cell Line , Virus Replication
2.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550057

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
Humans , Interferon Type I , alpha-Synuclein , SARS-CoV-2 , COVID-19 , Virus Replication , Cell Line , Endothelial Cells
3.
Methods Mol Biol ; 2227: 115-120, 2021.
Article in English | MEDLINE | ID: mdl-33847936

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is a quantitative analytical method used to measure the concentration of molecules in biological fluids through antigen-antibody reactions. Here we describe the measurement of anti-C1-inhibitor autoantibodies by an indirect ELISA. In this method patients' sera are incubated in a microplate coated with plasma derived C1-inhibitor.


Subject(s)
Autoantibodies/analysis , Complement C1 Inactivator Proteins/immunology , Angioedema/blood , Angioedema/diagnosis , Angioedema/immunology , Angioedemas, Hereditary/blood , Angioedemas, Hereditary/diagnosis , Angioedemas, Hereditary/immunology , Animals , Autoantibodies/blood , Enzyme-Linked Immunosorbent Assay/methods , Goats , Humans , Mice
4.
Clin Mol Allergy ; 19(1): 3, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33827715

ABSTRACT

BACKGROUND: Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare disease. Few states in developing countries have an adequate management of HAE, but none of them belongs to the former USSR area. This study analyses data from C1-INH-HAE patients from Belarus. METHODS: Data about clinical characteristics, genetics, access to diagnosis and treatment were collected from 2010 by the Belarusian Research Center for Pediatric Oncology, Hematology and Immunology in Minsk. A questionnaire about attacks, prophylactic (LTP) and on-demand therapy (ODT) was administered to patients. RESULTS: We identified 64 C1-INH-HAE patients belonging to 26 families, 27 (42.2%) of which were diagnosed in the last 3 years. The estimated minimal prevalence was 1:148,000. Median age at diagnosis was 29 years, with diagnostic delay of 19 years. Thirty-eight patients answered a questionnaire about therapy. Eleven patients did not use any treatment to resolve HAE attacks. Twenty-seven patients underwent ODT: 9 with appropriate treatments, and 18 with inappropriate treatments. Nine patients used LTP with attenuated androgens and 1 with tranexamic acid. Thirty-two patients answered a questionnaire about attacks and triggers: 368 angioedema attacks were reported, with an average of 10 attacks per year. We found 24 different SERPING1 variants: 9 missenses, 6 in splice sites, 6 small deletions, 2 nonsense, 1 large deletion; 7 have not been previously described. De novo variants were found in 11 patients. CONCLUSIONS: C1-INH-HAE diagnosis and management in Belarus is improved as seen from the high number of new diagnosis in the last 3 years. Next steps will be to reduce the diagnostic delay and to promote the LTP and ODT.

5.
Int Immunopharmacol ; 82: 106304, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32114411

ABSTRACT

An impairment of the endothelial barrier function underlies a wide spectrum of pathological conditions. Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) can be considered the "pathophysiological and clinical paradigm" of Paroxysmal Permeability Diseases (PPDs), conditions characterized by recurrent transient primitively functional alteration of the endothelial sieving properties, not due to inflammatory-ischemic-degenerative injury and completely reversible after the acute flare. It is a rare yet probably still underdiagnosed disease which presents with localized, non-pitting swelling of the skin and submucosal tissues of the upper respiratory and gastrointestinal tracts, without significant wheals or pruritus. The present review addresses the pathophysiology of C1-INH-HAE with a focus on the crucial role of the endothelium during contact and kallikrein/kinin system (CAS and KKS) activation, currently available and emerging biomarkers, methods applied to get new insights into the mechanisms underlying the disease (2D, 3D and in vivo systems), new promising investigation techniques (autonomic nervous system analysis, capillaroscopy, flow-mediated dilation method, non-invasive finger plethysmography). Hints are given to the binding of C1-INH to endothelial cells. Finally, crucial issues as the local vs systemic nature of CAS/KKS activation, the episodic nature of attacks vs constant C1-INH deficiency, pros and cons as well as future perspectives of available methodologies are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...