Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 8(3): 672-703, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37346476

ABSTRACT

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a fundamental role for making forecasts, simulating scenarios and evaluating the impact of preventive political, social and pharmaceutical measures. Optimal control theory represents a useful mathematical tool to plan the vaccination campaign aimed at eradicating the pandemic as fast as possible. The aim of this work is to explore the optimal prioritisation order for planning vaccination campaigns able to achieve specific goals, as the reduction of the amount of infected, deceased and hospitalized in a given time frame, among age classes. For this purpose, we introduce an age stratified SIR-like epidemic compartmental model settled in an abstract framework for modelling two-doses vaccination campaigns and conceived with the description of COVID19 disease. Compared to other recent works, our model incorporates all stages of the COVID-19 disease, including death or recovery, without accounting for additional specific compartments that would increase computational complexity and that are not relevant for our purposes. Moreover, we introduce an optimal control framework where the model is the state problem while the vaccine doses administered are the control variables. An extensive campaign of numerical tests, featured in the Italian scenario and calibrated on available data from Dipartimento di Protezione Civile Italiana, proves that the presented framework can be a valuable tool to support the planning of vaccination campaigns. Indeed, in each considered scenario, our optimization framework guarantees noticeable improvements in terms of reducing deceased, infected or hospitalized individuals with respect to the baseline vaccination policy.

2.
Infect Dis Model ; 7(2): 45-63, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35284699

ABSTRACT

Several epidemiological models have been proposed to study the evolution of COVID-19 pandemic. In this paper, we propose an extension of the SUIHTER model, to analyse the COVID-19 spreading in Italy, which accounts for the vaccination campaign and the presence of new variants when they become dominant. In particular, the specific features of the variants (e.g. their increased transmission rate) and vaccines (e.g. their efficacy to prevent transmission, hospitalization and death) are modeled, based on clinical evidence. The new model is validated comparing its near-future forecast capabilities with other epidemiological models and exploring different scenario analyses.

3.
Int J Numer Method Biomed Eng ; 37(9): e3513, 2021 09.
Article in English | MEDLINE | ID: mdl-34313401

ABSTRACT

An analysis of the COVID-19 epidemic is proposed on the basis of the epiMOX dashboard (publicly accessible at https://www.epimox.polimi.it) that deals with data of the epidemic trends and outbreaks in Italy from late February 2020. Our analysis provides an immediate appreciation of the past epidemic development, together with its current trends by fostering a deeper interpretation of available data through several critical epidemic indicators. In addition, we complement the epiMOX dashboard with a predictive tool based on an epidemiological compartmental model, named SUIHTER, for the forecast on the near future epidemic evolution.


Subject(s)
COVID-19 , Data Visualization , Epidemics , COVID-19/epidemiology , Data Analysis , Humans , Italy/epidemiology , SARS-CoV-2
4.
PLoS One ; 11(4): e0154244, 2016.
Article in English | MEDLINE | ID: mdl-27104948

ABSTRACT

The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or subject to various types of uncertainty. In the field of criminal investigations, problems of incomplete information are encountered almost by definition, given the obvious anti-detection strategies set up by criminals and the limited investigative resources. In this paper, we work on a specific dataset obtained from a real investigation, and we propose a strategy to identify missing links in a criminal network on the basis of the topological analysis of the links classified as marginal, i.e. removed during the investigation procedure. The main assumption is that missing links should have opposite features with respect to marginal ones. Measures of node similarity turn out to provide the best characterization in this sense. The inspection of the judicial source documents confirms that the predicted links, in most instances, do relate actors with large likelihood of co-participation in illicit activities.


Subject(s)
Crime/prevention & control , Criminals/statistics & numerical data , Information Storage and Retrieval/statistics & numerical data , Social Networking , Algorithms , Humans , Information Storage and Retrieval/methods , Models, Statistical , Reproducibility of Results
5.
Adv Biochem Eng Biotechnol ; 115: 33-53, 2009.
Article in English | MEDLINE | ID: mdl-19499209

ABSTRACT

Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.


Subject(s)
Biological Products/standards , Bioreactors , Biotechnology/instrumentation , Cell Culture Techniques/instrumentation , Disposable Equipment , Recombinant Proteins/standards , Animals , Biological Products/metabolism , Biotechnology/trends , CHO Cells , Cell Count , Cricetulus , Equipment Design , Humans , Kinetics , Oxygen/metabolism , Recombinant Proteins/biosynthesis , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...