Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6942, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117259

ABSTRACT

The objective of this study was to determine the influence of a total-mixed ration including unsalable carrots at 45% DM on the rumen microbiome; and the plasma, rumen and liver metabolomes. Carrots discarded at processing were investigated as an energy-dense substitute for barley grain in a conventional feedlot diet, and improved feed conversion efficiency by 25%. Here, rumen fluid was collected from 34 Merino lambs at slaughter (n = 16 control; n = 18 carrot) after a feeding period of 11-weeks. The V4 region of the 16S rRNA gene was sequenced to profile archaeal and bacterial microbe communities. Further, a comprehensive, targeted profile of known metabolites was constructed for blood plasma, rumen fluid and biopsied liver metabolites using a gas chromatography mass spectrometry (GC-MS) metabolomics approach. An in vitro batch culture was used to characterise ruminal fermentation including gas and methane (CH4) production. In vivo rumen microbial community structure of carrot fed lambs was dissimilar (P < 0.01; PERMANOVA), and all measures of alpha diversity were greater (P < 0.01), compared to those fed the control diet. Unclassified genera in Bacteroidales (15.9 ± 6.74% relative abundance; RA) were more abundant (P < 0.01) in the rumen fluid of carrot-fed lambs, while unclassified taxa in the Succinivibrionaceae family (11.1 ± 3.85% RA) were greater (P < 0.01) in the control. The carrot diet improved in vitro ruminal fermentation evidenced as an 8% increase (P < 0.01) in DM digestibility and a 13.8% reduction (P = 0.01) in CH4 on a mg/ g DM basis, while the control diet increased (P = 0.04) percentage of propionate within total VFA by 20%. Fourteen rumen fluid metabolites and 27 liver metabolites were influenced (P ≤ 0.05) by diet, while no effect (P ≥ 0.05) was observed in plasma metabolites. The carrot diet enriched (impact value = 0.13; P = 0.01) the tyrosine metabolism pathway (acetoacetic acid, dopamine and pyruvate), while the control diet enriched (impact value = 0.42; P ≤ 0.02) starch and sucrose metabolism (trehalose and glucose) in rumen fluid. This study demonstrated that feeding 45% DM unsalable carrots diversified bacterial communities in the rumen. These dietary changes influenced pathways of tyrosine degradation, such that previous improvements in feed conversion efficiency in lambs could be explained.


Subject(s)
Daucus carota , Animals , Daucus carota/metabolism , Rumen/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Animal Feed/analysis , Diet/veterinary , Bacteria , Fermentation , Amino Acids/metabolism , Tyrosine/metabolism , Digestion
2.
Front Biosci (Elite Ed) ; 14(3): 22, 2022 08 18.
Article in English | MEDLINE | ID: mdl-36137987

ABSTRACT

BACKGROUND: A foal undergoes considerable growth and development from birth to weaning, progressing from a milk-based diet to complete herbivory. The symbiotic relationships between bacteria, archaea and fungi substantiate this energy demand by colonising the hindgut and remaining flexible throughout the diet transitions. METHODS: A total of 70 faecal samples were collected from 14 mares and their foals across five studs in NSW as they aged from 0 to 5 months old. DNA was extracted from faecal samples and underwent amplification and sequencing of the 16S rRNA gene V4 hypervariable region of archaea and bacteria, and the fungal internal transcribed spacer-1 (ITS1) region. The fungal and bacterial community structure was assessed using Bray-Curtis dissimilarities, and the effect of age at sampling and location was determined using PERMANOVA. RESULTS: Age at sampling had a substantial effect on the foal's archaeal and bacterial faecal microbiota (PERMANOVA: R2 = 0.16; p < 0.01), while the effect of geographical location was smaller but still significant (PERMANOVA: R2 = 0.07; p < 0.01). The overall abundance, diversity and richness of bacterial and archaeal populations increased (p < 0.01) as foals aged, most noticeably rising between foals 1 to 2 and 2 to 3 months of age. The 15 most relatively abundant fungal species were all environmental saprophytes, most strongly affected by geographical location (p < 0.01) rather than age at sampling. There was an effect of location on Preussia Africana (p = 0.02) and a location × age interaction for fungal species Preussia persica (p < 0.01), Acremonium furcatum (p = 0.04), and Podospora pseudocomata (p = 0.01). There was no effect of age, location, or location × age interaction on the relative abundance of the remaining fungal species. CONCLUSIONS: The faecal microbiome appeared to stabilise for most bacterial and archaeal genera by 2 to 3 months of age, resembling an adult mare. Bacterial genera isolated from faecal samples belonged mainly to the Firmicutes phylum. Age at sampling more strongly affected the archaeal and bacterial faecal microbiota than the effect of the geographical location where the horse was sampled. The lack of effect of location on microbe populations suggests that although environmental factors may influence population structure, there are distinct differences at each stage of foal maturation.


Subject(s)
Microbiota , Animals , Bacteria/genetics , Feces/microbiology , Female , Horses/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
3.
J Anim Sci ; 99(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33493259

ABSTRACT

The objective was to evaluate the effects of a specific strain of live yeast (LY) on growth performance, fermentation parameters, feed efficiency, and bacterial communities in the rumen of growing cattle fed low-quality hay. In experiment (exp.) 1, 12 Droughtmaster bull calves (270 ± 7.6 kg initial body weight [BW]) were blocked by BW into two groups, allocated individually in pens, and fed ad libitum Rhodes grass hay (8.4% of crude protein [CP]) and 300 g/bull of supplement (52% CP) without (Control) or with LY (8 × 109 colony-forming unit [CFU]/d Saccharomyces cerevisiae CNCM I-1077; Lallemand Inc., Montreal, Canada) for 28 d, followed by 7 d in metabolism crates. Blood and rumen fluid were collected before feeding and 4 h after feeding. In exp. 2, for assessment of growth performance, 48 Charbray steers (329 ± 20.2 kg initial BW) were separated into two blocks by initial BW and randomly allocated into 12 pens. The steers were fed Rhodes grass hay (7.3% CP) and 220 g/steer of supplement (60% CP) without or with LY (8 × 109 CFU/d) for 42 d, after a 2-wk adaptation period. In exp. 1, fiber digestibility was calculated from total fecal collection, and, in exp 2, indigestible neutral detergent fiber (NDF) was used as a marker. Inclusion of LY increased (P = 0.03) NDF intake by 8.3% in exp. 1, without affecting total tract digestibility. No changes were observed in microbial yield or in the efficiency of microbial production. There was a Treatment × Time interaction (P < 0.01) for the molar proportion of short-chain fatty acids, with LY increasing propionate before feeding. Inclusion of LY decreased rumen ammonia 4 h after feeding (P = 0.03). The addition of LY reduced rumen bacterial diversity and the intraday variation in bacterial populations. Relative populations of Firmicutes and Verrucomicrobia varied over time (P < 0.05) only within the Control group. At the genus level, the relative abundance of an unclassified bacterial genus within the order Clostridiales, a group of cellulolytic bacteria, was reduced from 0 to 4 h after feeding in the Control group (P = 0.02) but not in the LY group (P = 1.00). During exp. 2, LY tended to increase average daily gain (ADG) (P = 0.08) and feed efficiency (P = 0.10), with no effect on NDF intake or digestibility. In conclusion, S. cerevisiae CNCM I-1077 reduced the intraday variation of rumen bacteria and increased the amount of NDF digested per day. These observations could be associated with the tendency of increased ADG and feed efficiency in growing cattle fed a low-quality forage.


Subject(s)
Animal Feed , Saccharomyces cerevisiae , Animal Feed/analysis , Animals , Canada , Cattle , Diet/veterinary , Digestion , Fermentation , Male , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...