Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Diabetes Complications ; 34(2): 107448, 2020 02.
Article in English | MEDLINE | ID: mdl-31761419

ABSTRACT

AIM OF THE STUDY: During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS: Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS: All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ±â€¯0.50 vs. 0.92 ±â€¯0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS: In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.


Subject(s)
Angiotensinogen/urine , Diabetes Mellitus, Type 2/physiopathology , Renin-Angiotensin System/physiology , Albuminuria , Animals , Biomarkers/urine , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Type 2/urine , Diet, High-Fat/adverse effects , Disease Models, Animal , Hypertension/complications , Male , Mice , Mice, Inbred C57BL , Obesity/complications
2.
Clin Exp Pharmacol Physiol ; 45(12): 1274-1285, 2018 12.
Article in English | MEDLINE | ID: mdl-30058175

ABSTRACT

Diabetes mellitus and hypertension are diseases that are strongly correlated. A major factor in this correlation is the renin-angiotensin system (RAS), with the peptide angiotensin II being a key component. This study analyzed the impact of Angiotensin Type 1 receptor (AT1R) and Angiotension Type 2 receptor (AT2R) in atrial function. MAIN METHODS: To perform the experiments, Wistar Kyoto rats (WKY), diabetic streptozotocin-induced WKY rats and spontaneously hypertensive rats (SHR) were used, and stimulation of cardiovascular function was done by means of the following drugs: angiotensin II, novokinin and the antagonists losartan and PD123177. We also measured the systolic blood pressure (SBP). RESULTS: An increase in AT1R function was observed in diabetic and hypertensive rats (18% in right atria [RA] and 11% in left atria [LA]). We also observed an increase in calcium release from the endoplasmic reticulum in right atria of diabetic rats (31%) and in right atria of hypertensive rats (35%). On the other hand, a decreased response of AT2R in diabetic and hypertensive rats was observed, this decreased response was greater in hypertensive rats (RA, 10%; LA, 12%). These results have demonstrated a dysfunction of the RAS that may contribute to the common dysfunctions of the cardiovascular system in diabetic and hypertensive rats.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Heart Atria/physiopathology , Muscle Contraction , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Animals , Blood Pressure , Diabetes Mellitus, Experimental/metabolism , Rats , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...