Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Pharmaceutics ; 15(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242749

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.

3.
Mol Pharm ; 19(11): 3700-3729, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36174227

ABSTRACT

Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.


Subject(s)
Brain , Nanoparticles , Brain/metabolism , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Transcytosis , Nanoparticles/chemistry , Central Nervous System Agents/metabolism , Pharmaceutical Preparations/metabolism
5.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562146

ABSTRACT

A developing family of chemotherapeutics-derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)-target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48-61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48-61 and Angiopep-2 allowed the delivery of 0.3-0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.

6.
Cell Physiol Biochem ; 55(1): 61-90, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33508184

ABSTRACT

Pancreatic cancers are among the most ominous, and among the most studied. Their complexities have provided ample material for a huge investigative effort, which is briefly surveyed in this review. Eradication by surgery has proven extremely difficult, and a successful chemotherapeutic approach is desperately needed. Treatment with "traditional" anticancer drugs, such as benchmark gemcitabine or the current standard-of-care FOLFIRINOX quaternary combination increase the mean overall survival by only a few months and often leads to chemoresistance. Much work is therefore currently devoted to potentiating our pharmacological weapons by accurate targeting and, in particular, by acting on the dense tumoral stroma, a distinctive feature of PDAC accounting for much of the therapeutic difficulty. We give an overview of recent developments, touching on the major aspects of PDAC physiology and biochemistry, currently-used and experimental drugs, and targeting technologies under development. A few papers are discussed in some detail to help provide a sense of how the field is moving.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
7.
Oxid Med Cell Longev ; 2021: 7658501, 2021.
Article in English | MEDLINE | ID: mdl-34992716

ABSTRACT

Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several µM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Stilbenes/metabolism , Animals , Disease Models, Animal , HeLa Cells , Humans , Mice , Transcription Factors , Zebrafish
8.
Redox Biol ; 37: 101705, 2020 10.
Article in English | MEDLINE | ID: mdl-33007503

ABSTRACT

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Subject(s)
Kv1.3 Potassium Channel , Mitochondria , Animals , Cell Line, Tumor , Dissection , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/genetics , Mice, Inbred C57BL , Reactive Oxygen Species
9.
Cell Physiol Biochem ; 53(S1): 11-43, 2019.
Article in English | MEDLINE | ID: mdl-31834993

ABSTRACT

Ion channels residing in the inner (IMM) and outer (OMM) mitochondrial membranes are emerging as noteworthy pharmacological targets in oncology. While these aspects have not been investigated for all of them, a role in cancer growth and/or metastasis and/or drug resistance has been shown at least for the IMM-residing Ca2+ uniporter complex and K+- selective mtKV1.3, mtIKCa, mtSKCa and mtTASK-3, and for the OMM Voltage-Dependent Anion Channel (mitochondrial porin). A special case is that of the Mitochondrial Permeability Transition Pore, a large pore which forms in the IMM of severely stressed cells, and which may be exploited to precipitate the death of cancerous cells. Here we briefly discuss the oncological relevance of mitochondria and their channels, and summarize the methods that can be adopted to selectively target these intracellular organelles. We then present an updated list of known mitochondrial channels, and review the pharmacology of those with proven relevance for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Ion Channels/metabolism , Mitochondria/metabolism , Small Molecule Libraries/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Calcium Channels/chemistry , Calcium Channels/metabolism , Humans , Ion Channels/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neoplasms/drug therapy , Neoplasms/pathology , Potassium Channels/chemistry , Potassium Channels/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/metabolism
10.
Int J Mol Sci ; 20(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671737

ABSTRACT

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein-a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Obesity/metabolism , Stilbenes/pharmacology , 3T3-L1 Cells , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Body Weight , Disease Models, Animal , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Obesity/genetics , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sirtuin 1/genetics , T-Box Domain Proteins/genetics , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
11.
Eur J Med Chem ; 181: 111557, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31374419

ABSTRACT

Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.


Subject(s)
Biological Products/pharmacology , Hypolipidemic Agents/pharmacology , Polyphenols/pharmacology , Animals , Biological Products/chemistry , Cell Membrane/drug effects , Endoplasmic Reticulum/drug effects , Humans , Hypolipidemic Agents/chemistry , Liposomes/antagonists & inhibitors , Mitochondria/drug effects , Polyphenols/chemistry
12.
Aquat Toxicol ; 189: 1-8, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28554051

ABSTRACT

Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects.


Subject(s)
Chlorophyta/metabolism , Seaweed/metabolism , Selenium Compounds/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Chlorophyta/drug effects , Ecosystem , Environmental Monitoring , Humans , Seaweed/drug effects , Selenic Acid/metabolism , Selenic Acid/toxicity , Selenium/toxicity , Selenium Compounds/toxicity , Selenocysteine/analogs & derivatives , Selenocysteine/metabolism , Selenocysteine/toxicity , Selenomethionine/metabolism , Selenomethionine/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...