Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793510

ABSTRACT

In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel devices and systems. In this context, diatomic inorganic nanotubes formed by atoms of elements from the 13th group of the periodic table (B, Al, Ga, In, Tl) and nitrogen (N) have received much research attention. In this study, the elastic properties of single-walled boron nitride, aluminium nitride, gallium nitride, indium nitride, and thallium nitride nanotubes were assessed numerically using the nanoscale continuum modelling approach (also called molecular structural mechanics). The elastic properties (rigidities, surface Young's and shear moduli, and Poisson's ratio) of nitride nanotubes are discussed with respect to the bond length of the corresponding diatomic hexagonal lattice. The results obtained contribute to a better understanding of the mechanical response of nitride compound-based nanotubes, covering a broad range, from the well-studied boron nitride NTs to the hypothetical thallium nitride NTs.

2.
Materials (Basel) ; 17(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399050

ABSTRACT

Two-dimensional (2D) nanostructures of aluminum nitride (AlN) and gallium nitride (GaN), called nanosheets, have a graphene-like atomic arrangement and represent novel materials with important upcoming applications in the fields of flexible electronics, optoelectronics, and strain engineering, among others. Knowledge of their mechanical behavior is key to the correct design and enhanced functioning of advanced 2D devices and systems based on aluminum nitride and gallium nitride nanosheets. With this background, the surface Young's and shear moduli of AlN and GaN nanosheets over a wide range of aspect ratios were assessed using the nanoscale continuum model (NCM), also known as the molecular structural mechanics (MSM) approach. The NCM/MSM approach uses elastic beam elements to represent interatomic bonds and allows the elastic moduli of nanosheets to be evaluated in a simple way. The surface Young's and shear moduli calculated in the current study contribute to building a reference for the evaluation of the elastic moduli of AlN and GaN nanosheets using the theoretical method. The results show that an analytical methodology can be used to assess the Young's and shear moduli of aluminum nitride and gallium nitride nanosheets without the need for numerical simulation. An exploratory study was performed to adjust the input parameters of the numerical simulation, which led to good agreement with the results of elastic moduli available in the literature. The limitations of this method are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...