Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Ergon ; 106: 103877, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36095895

ABSTRACT

In the past few years, companies have started considering the adoption of upper-limb occupational exoskeletons as a solution to reduce the health and cost issues associated with work-related shoulder overuse injuries. Most of the previous research studies have evaluated the efficacy of these devices in laboratories by measuring the reduction in muscle exertion resulting from device use in stereotyped tasks and controlled conditions. However, to date, uncertainties exist about generalizing laboratory results to more realistic conditions of use. The current study aims to investigate the in-field efficacy (through electromyography and perceived exertion), usability, and acceptance of a commercial spring-loaded upper-limb exoskeleton in cleaning job activities. The operators were required to maintain prolonged overhead postures while holding and moving a pole equipped with tools for window and ceiling cleaning. Compared to the normal working condition, the exoskeleton significantly reduced the total shoulder muscle activity (∼17%), the activity of the anterior deltoid (∼26%), medial deltoid (∼28%), and upper trapezius (∼24%). With the exoskeleton, the operators perceived reduced global effort (∼17%) as well as a reduced local effort in the shoulder (∼18%), arm (∼22%), upper back (∼14%), and lower back (∼16%). The beneficial effect of the exoskeleton and its suitability in cleaning settings are corroborated by the acceptance and usability scores assigned by operators, which averaged ∼5.5 out of 7 points. To the authors' knowledge, this study is the first to present an experience of exoskeleton use in cleaning contexts. The outcomes of this research invite further studies to test occupational exoskeletons in various realistic applications to foster scientific-grounded ergonomic evaluations and encourage the informed adoption of the technology.


Subject(s)
Exoskeleton Device , Superficial Back Muscles , Humans , Electromyography , Upper Extremity/physiology , Shoulder/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena
2.
Appl Ergon ; 101: 103679, 2022 May.
Article in English | MEDLINE | ID: mdl-35066399

ABSTRACT

This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts.


Subject(s)
Exoskeleton Device , Biomechanical Phenomena , Humans , Shoulder , Upper Extremity
3.
J Neuroeng Rehabil ; 18(1): 111, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34217307

ABSTRACT

BACKGROUND: Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. METHODS: Seven participants (46-71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition. RESULTS: The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. CONCLUSIONS: This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies.


Subject(s)
Amputees , Robotics , Aged , Gait , Humans , Middle Aged , Orthotic Devices , Pilot Projects , Quality of Life , Walking
4.
Sci Rep ; 9(1): 7157, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073188

ABSTRACT

Robotic exoskeletons are regarded as promising technologies for neurological gait rehabilitation but have been investigated comparatively little as training aides to facilitate active aging in the elderly. This study investigated the feasibility of an exoskeletal Active Pelvis Orthosis (APO) for cardiopulmonary gait training in the elderly. Ten healthy elderly volunteers exhibited a decreased (-26.6 ± 16.1%) Metabolic Cost of Transport (MCoT) during treadmill walking following a 4-week APO-assisted training program, while no significant changes were observed for a randomly assigned control group (n = 10) performing traditional self-paced overground walking. Moreover, robot-assisted locomotion was found to require 4.24 ± 2.57% less oxygen consumption than free treadmill walking at the same speed. These findings support the adoption of exoskeletal devices for the training of frail individuals, thus opening new possibilities for sustainable strategies for healthy aging.


Subject(s)
Exoskeleton Device , Walking , Aged , Exercise , Female , Hip/physiology , Humans , Male , Oxygen Consumption , Pelvis/physiology , Program Evaluation
5.
Front Neurosci ; 12: 71, 2018.
Article in English | MEDLINE | ID: mdl-29491830

ABSTRACT

We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.

6.
Front Neurorobot ; 11: 25, 2017.
Article in English | MEDLINE | ID: mdl-28611621

ABSTRACT

Restoring locomotion functionality of transfemoral amputees is essential for early rehabilitation treatment and for preserving mobility and independence in daily life. Research in wearable robotics fostered the development of innovative active mechatronic lower-limb prostheses designed with the goal to reduce the cognitive and physical effort of lower-limb amputees in rehabilitation and daily life activities. To ensure benefits to the users, active mechatronic prostheses are expected to be aware of the user intention and properly interact in a closed human-in-the-loop paradigm. In the state of the art various cognitive interfaces have been proposed to online decode the user's intention. Electromyography in combination with mechanical sensing such as inertial or pressure sensors is a widely adopted solution for driving active mechatronic prostheses. In this framework, researchers also explored targeted muscles re-innervation for an objective-oriented surgical amputation promoting wider usability of active prostheses. However, information kept by the neural component of the cognitive interface deteriorates in a prolonged use scenario due to electrodes-related issues, thereby undermining the correct functionality of the active prosthesis. The objective of this work is to present a novel controller for an active transfemoral prosthesis based on whole body awareness relying on a wireless distributed non-invasive sensory apparatus acting as cognitive interface. A finite-state machine controller based on signals monitored from the wearable interface performs subject-independent intention detection of functional tasks such as ground level walking, stair ascent, and sit-to-stand maneuvres and their main sub-phases. Experimental activities carried out with four transfemoral amputees (among them one dysvascular) demonstrated high reliability of the controller capable of providing 100% accuracy rate in treadmill walking even for weak subjects and low walking speeds. The minimum success rate was of 94.8% in performing sit-to-stand tasks. All the participants showed high confidence in using the transfemoral active prosthesis even without training period thanks to intuitiveness of the whole body awareness controller.

8.
Front Neurorobot ; 11: 15, 2017.
Article in English | MEDLINE | ID: mdl-28367121

ABSTRACT

An emerging approach to design locomotion assistive devices deals with reproducing desirable biological principles of human locomotion. In this paper, we present a bio-inspired controller for locomotion assistive devices based on the concept of motor primitives. The weighted combination of artificial primitives results in a set of virtual muscle stimulations. These stimulations then activate a virtual musculoskeletal model producing reference assistive torque profiles for different locomotion tasks (i.e., walking, ascending stairs, and descending stairs). The paper reports the validation of the controller through a set of experiments conducted with healthy participants. The proposed controller was tested for the first time with a unilateral leg exoskeleton assisting hip, knee, and ankle joints by delivering a fraction of the computed reference torques. Importantly, subjects performed a track involving ground-level walking, ascending stairs, and descending stairs and several transitions between these tasks. These experiments highlighted the capability of the controller to provide relevant assistive torques and to effectively handle transitions between the tasks. Subjects displayed a natural interaction with the device. Moreover, they significantly decreased the time needed to complete the track when the assistance was provided, as compared to wearing the device with no assistance.

9.
J Neuroeng Rehabil ; 14(1): 29, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28410594

ABSTRACT

BACKGROUND: In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. METHODS: Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. RESULTS: The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., < 1 cm) relative displacements between the APO cuffs and the corresponding body segments (called stability); and (iii) significant increment in the human-robot kinematics discrepancy at the hip flexion-extension joint associated with speed and assistance level increase. CONCLUSIONS: APO mechanics and actuation have negligible interference in human locomotion. Human kinematics was not affected by the APO under all tested conditions. In addition, under all tested conditions, there was no relevant relative displacement between the orthotic cuffs and the corresponding anatomical segments. Hence, the physical human-robot coupling is reliable. These facts prove that the adopted mechanical design of passive degrees of freedom allows an effective human-robot kinematic coupling. We believe that this analysis may be useful for the definition of evaluation metrics for the ergonomics assessment of wearable robots.


Subject(s)
Ergonomics , Orthotic Devices , Pelvis , Robotics , Adult , Biomechanical Phenomena , Equipment Design , Female , Healthy Volunteers , Hip Joint , Humans , Locomotion , Lower Extremity/physiology , Male , Walking
10.
IEEE Trans Biomed Eng ; 64(10): 2419-2430, 2017 10.
Article in English | MEDLINE | ID: mdl-28252387

ABSTRACT

This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.


Subject(s)
Actigraphy/instrumentation , Algorithms , Conductometry/instrumentation , Electrodes , Gait/physiology , Oscillometry/methods , Adult , Equipment Design , Equipment Failure Analysis , Humans , Male , Oscillometry/instrumentation , Reproducibility of Results , Sensitivity and Specificity
11.
Article in English | MEDLINE | ID: mdl-26737141

ABSTRACT

In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.


Subject(s)
Electromyography , Exoskeleton Device , Hip/physiology , Muscle, Skeletal/physiology , Robotics/instrumentation , Adult , Equipment Design , Humans , Male , Pelvis/physiology , Torque , Walking/physiology
12.
Article in English | MEDLINE | ID: mdl-26737144

ABSTRACT

In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%.


Subject(s)
Fuzzy Logic , Locomotion , Orthotic Devices , Pelvis/physiology , Hip Joint/physiology , Humans , Leg/physiology , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...