Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299787

ABSTRACT

The safety of an operator working in a hazardous environment is a recurring topic in the technical literature of recent years, especially for high-risk environments such as oil and gas plants, refineries, gas depots, or chemical industries. One of the highest risk factors is constituted by the presence of gaseous substances such as toxic compounds such as carbon monoxide and nitric oxides, particulate matter or indoors, in closed spaces, low oxygen concentration atmospheres, and high concentrations of CO2 that can represent a risk for human health. In this context, there exist many monitoring systems for lots of specific applications where gas detection is required. In this paper, the authors present a distributed sensing system based on commercial sensors aimed at monitoring the presence of toxic compounds generated by a melting furnace with the aim of reliably detecting the insurgence of dangerous conditions for workers. The system is composed of two different sensor nodes and a gas analyzer, and it exploits commercial low-cost commercially available sensors.


Subject(s)
Air Pollutants , Air Pollution , Humans , Environmental Monitoring , Air Pollution/analysis , Particulate Matter/analysis , Carbon Monoxide/analysis , Gases/analysis , Workplace , Air Pollutants/analysis
2.
Sensors (Basel) ; 22(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36560163

ABSTRACT

In this paper, an IoT sensor node, based on smart Bluetooth low energy (BLE), for the health monitoring of artworks and large wooden structures is presented. The measurements from sensors on board the node are collected in real-time and sent to a remote gateway. The sensor node allows for the monitoring of environmental parameters, in particular, temperature and humidity, with accurate and robust integrated sensors. The developed node also embeds an accelerometer, which also allows other mechanical quantities (such as tilt) to be derived. This feature can be exploited to perform structural monitoring, exploiting the processing of data history to detect permanent displacements or deformations. The node is triggered by acceleration transients; therefore, it can also generate alarms related to shocks. This feature is crucial, for instance, in the case of transportation. The developed device is low-cost and has very good performance in terms of power consumption and compactness. A reliability assessment showed excellent durability, and experimental tests proved very satisfactory robustness against working condition variations. The presented results confirm that the developed device allows for the realization of pervasive monitoring systems, in the context of the IoT paradigm, with sensor nodes devoted to the monitoring of each artwork present in a museum or in a church.


Subject(s)
Acceleration , Museums , Reproducibility of Results , Humidity , Temperature
3.
Sensors (Basel) ; 22(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35336543

ABSTRACT

In this article, we propose a reliable and low-latency Long Range Wide Area Network (LoRaWAN) solution for environmental monitoring in factories at major accident risk (FMAR). In particular, a low power wearable device for sensing the toxic inflammable gases inside an industrial plant is designed with the purpose of avoiding peculiar risks and unwanted accidents to occur. Moreover, the detected data have to be urgently and reliably delivered to remote server to trigger preventive immediate actions so as to improve the machine operation. In these settings, LoRaWAN has been identified as the most proper communications technology to the needs owing to the availability of off the shelf devices and software. Hence, we assess the technological limits of LoRaWAN in terms of latency and reliability and we propose a fully LoRaWAN compliant solution to overcome these limits. The proposed solution envisages coordinated end device (ED) transmissions through the use of Downlink Control Packets (DCPs). Experimental results validate the proposed method in terms of service requirements for the considered FMAR scenario.


Subject(s)
Environmental Monitoring , Wearable Electronic Devices , Accidents , Reproducibility of Results , Software
4.
Sensors (Basel) ; 21(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34696157

ABSTRACT

This paper aims to thoroughly investigate the potential of ion current measurements in the context of combustion process monitoring in gas turbines. The study is targeted at characterizing the dynamic behavior of a typical ion-current measurement system based on a spark-plug. Starting from the preliminary study published in a previous work, the authors propose a refined model of the electrode (spark plug), based on the Langmuir probe theory, that incorporates the physical surface effects and proposes an optimized design of the conditioning electronics, which exploits a low frequency AC square wave biasing of the electrodes and allows for compensating some relevant parasitic effects. The authors present experimental results obtained in the laboratory, which allow for the evaluation of the validity of the model and the interpreting of the characteristics of the measurement signal. Finally, measurements carried out in the field on an industrial combustor are presented. The results confirm that the charged chemical species density sensed by the proposed measurement system and related to the mean value of the output signal is an indicator of the 'average' combustion process conditions in terms e.g., of air/fuel ratio, whereas the high frequency spectral component of the measured signal can give information related to the turbulent regime and to the presence of pressure pulsations. Results obtained with a prototype system demonstrated an achievable resolution of about 5 Pa on the estimated amplitude, even under small biasing voltage (22.5 V) and an estimated bandwidth of 10 kHz.

5.
J Enzyme Inhib Med Chem ; 36(1): 394-401, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33430654

ABSTRACT

In this paper, the efficiency of the carbonic anhydrase (CA) enzyme in accelerating the hydration of CO2 is evaluated using a measurement system which consists of a vessel in which a gaseous flow of mixtures of nitrogen and CO2 is bubbled into water or water solutions containing a known quantity of CA enzyme. The pH value of the solution and the CO2 concentration at the measurement system gas exhaust are continuously monitored. The measured CO2 level allows for assessing the quantity of CO2, which, subtracted from the gaseous phase, is dissolved into the liquid phase and/or hydrated to bicarbonate. The measurement procedure consists of inducing a transient and observing and modelling the different kinetics involved in the steady-state recovery with and without CA. The main contribution of this work is exploiting dynamical system theory and chemical kinetics modelling for interpreting measurement results for characterising the activity of CA enzymes. The data for model fitting are obtained from a standard bioreactor, in principle equal to standard two-phase bioreactors described in the literature, in which two different techniques can be used to move the process itself away from the steady-state, inducing transients.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Models, Chemical , Bioreactors , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Hydrogen-Ion Concentration , Kinetics
6.
Sensors (Basel) ; 19(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340549

ABSTRACT

In this paper the authors discuss the realization of a Long Range Wide Area Network (LoRaWAN) network infrastructure to be employed for monitoring activities within the marine environment. In particular, transmission ranges as well as the assessment of parameters like Signal to Noise Ratio (SNR) and Received Signal Strength Indicator (RSSI) are analyzed in the specific context of an aquaculture industrial plant, setting up a transmission channel from an offshore monitoring structure provided with a LoRaWAN transmitter, to an ashore receiving device composed of two LoRaWAN Gateways. A theoretical analysis about the feasibility of the transmission is provided. The performances of the system are then measured with different network parameters (in particular the Spreading Factor-SF) as well as with two different heights for the transmitting antenna. Test results prove that efficient data transmission can be achieved at a distance of 8.33 km even using worst case network settings: this suggests the effectiveness of the system even in harsher environmental conditions, thus entailing a lower quality of the transmission channel, or for larger transmission ranges.

SELECTION OF CITATIONS
SEARCH DETAIL
...