Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
Add more filters










Publication year range
1.
Nat Comput Sci ; 4(6): 451-460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839932

ABSTRACT

The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables.

2.
J Chem Theory Comput ; 20(13): 5428-5438, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38924770

ABSTRACT

Protein folding is a critical process that determines the functional state of proteins. Proper folding is essential for proteins to acquire their functional three-dimensional structures and execute their biological role, whereas misfolded proteins can lead to various diseases, including neurodegenerative disorders like Alzheimer's and Parkinson's. Therefore, a deeper understanding of protein folding is vital for understanding disease mechanisms and developing therapeutic strategies. This study introduces the Stochastic Landscape Classification (SLC), an innovative, automated, nonlearning algorithm that quantitatively analyzes protein folding dynamics. Focusing on collective variables (CVs) - low-dimensional representations of complex dynamical systems like molecular dynamics (MD) of macromolecules - the SLC approach segments the CVs into distinct macrostates, revealing the protein folding pathway explored by MD simulations. The segmentation is achieved by analyzing changes in CV trends and clustering these segments using a standard density-based spatial clustering of applications with noise (DBSCAN) scheme. Applied to the MD-based CV trajectories of Chignolin and Trp-Cage proteins, the SLC demonstrates apposite accuracy, validated by comparing standard classification metrics against ground-truth data. These metrics affirm the efficacy of the SLC in capturing intricate protein dynamics and offer a method to evaluate and select the most informative CVs. The practical application of this technique lies in its ability to provide a detailed, quantitative description of protein folding processes, with significant implications for understanding and manipulating protein behavior in industrial and pharmaceutical contexts.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Stochastic Processes , Algorithms , Proteins/chemistry , Oligopeptides/chemistry , Peptides
3.
PNAS Nexus ; 3(4): pgae159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665160

ABSTRACT

A variety of enhanced sampling (ES) methods predict multidimensional free energy landscapes associated with biological and other molecular processes as a function of a few selected collective variables (CVs). The accuracy of these methods is crucially dependent on the ability of the chosen CVs to capture the relevant slow degrees of freedom of the system. For complex processes, finding such CVs is the real challenge. Machine learning (ML) CVs offer, in principle, a solution to handle this problem. However, these methods rely on the availability of high-quality datasets-ideally incorporating information about physical pathways and transition states-which are difficult to access, therefore greatly limiting their domain of application. Here, we demonstrate how these datasets can be generated by means of ES simulations in trajectory space via the metadynamics of paths algorithm. The approach is expected to provide a general and efficient way to generate efficient ML-based CVs for the fast prediction of free energy landscapes in ES simulations. We demonstrate our approach with two numerical examples, a 2D model potential and the isomerization of alanine dipeptide, using deep targeted discriminant analysis as our ML-based CV of choice.

4.
J Chem Inf Model ; 64(9): 3599-3604, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38620066

ABSTRACT

Understanding tautomerism and characterizing solvent effects on the dynamic processes pose significant challenges. Using enhanced-sampling molecular dynamics based on state-of-the-art deep learning potentials, we investigated the tautomeric equilibria of glycine in water. We observed that the tautomerism between neutral and zwitterionic glycine can occur through both intramolecular and intermolecular proton transfers. The latter proceeds involving a contact anionic-glycine-hydronium ion pair or separate cationic-glycine-hydroxide ion pair. These pathways with comparable barriers contribute almost equally to the reaction flux.


Subject(s)
Glycine , Molecular Dynamics Simulation , Solvents , Water , Glycine/chemistry , Water/chemistry , Solvents/chemistry , Isomerism , Protons , Molecular Conformation
5.
Chem Sci ; 15(9): 3382-3392, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425540

ABSTRACT

The anomalous λ-transition of liquid sulfur, which is supposed to be related to the transformation of eight-membered sulfur rings into long polymeric chains, has attracted considerable attention. However, a detailed description of the underlying dynamical polymerization process is still missing. Here, we study the structures and the mechanism of the polymerization processes of liquid sulfur across the λ-transition as well as its reverse process of formation of the rings. We do so by performing ab initio-quality molecular dynamics simulations thanks to a combination of machine learning potentials and state-of-the-art enhanced sampling techniques. With our approach, we obtain structural results that are in good agreement with the experiments and we report precious dynamical insights into the mechanisms involved in the process.

6.
Proc Natl Acad Sci U S A ; 121(10): e2313542121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412121

ABSTRACT

Studying the pathways of ligand-receptor binding is essential to understand the mechanism of target recognition by small molecules. The binding free energy and kinetics of protein-ligand complexes can be computed using molecular dynamics (MD) simulations, often in quantitative agreement with experiments. However, only a qualitative picture of the ligand binding/unbinding paths can be obtained through a conventional analysis of the MD trajectories. Besides, the higher degree of manual effort involved in analyzing pathways limits its applicability in large-scale drug discovery. Here, we address this limitation by introducing an automated approach for analyzing molecular transition paths with a particular focus on protein-ligand dissociation. Our method is based on the dynamic time-warping algorithm, originally designed for speech recognition. We accurately classified molecular trajectories using a very generic descriptor set of contacts or distances. Our approach outperforms manual classification by distinguishing between parallel dissociation channels, within the pathways identified by visual inspection. Most notably, we could compute exit-path-specific ligand-dissociation kinetics. The unbinding timescale along the fastest path agrees with the experimental residence time, providing a physical interpretation to our entirely data-driven protocol. In combination with appropriate enhanced sampling algorithms, this technique can be used for the initial exploration of ligand-dissociation pathways as well as for calculating path-specific thermodynamic and kinetic properties.

7.
J Am Chem Soc ; 146(1): 552-566, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38146212

ABSTRACT

The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.


Subject(s)
Chlorides , Water , Solute Carrier Family 12, Member 2/chemistry , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , Chlorides/metabolism , Mutagenesis , Cations/metabolism , Water/metabolism
8.
Proc Natl Acad Sci U S A ; 120(50): e2313023120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38060558

ABSTRACT

Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface. We find that at low temperatures our results agree with the well-established picture. However, if we increase the temperature to reach operando conditions, the surface undergoes a global dynamical change and the step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally associated with this surface, appear and disappear continuously. Our simulations illuminate the danger of extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can only be inferred from calculations that take dynamics fully into account. More than that, they show that it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.

9.
Proc Natl Acad Sci U S A ; 120(46): e2304308120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931103

ABSTRACT

Accurate predictions of ligand binding affinities would greatly accelerate the first stages of drug discovery campaigns. However, using highly accurate interatomic potentials based on quantum mechanics (QM) in free energy methods has been so far largely unfeasible due to their prohibitive computational cost. Here, we present an efficient method to compute QM free energies from simulations using cheap reference potentials, such as force fields (FFs). This task has traditionally been out of reach due to the slow convergence of computing the correction from the FF to the QM potential. To overcome this bottleneck, we generalize targeted free energy methods to employ multiple maps-implemented with normalizing flow neural networks (NNs)-that maximize the overlap between the distributions. Critically, the method requires neither a separate expensive training phase for the NNs nor samples from the QM potential. We further propose a one-epoch learning policy to efficiently avoid overfitting, and we combine our approach with enhanced sampling strategies to overcome the pervasive problem of poor convergence due to slow degrees of freedom. On the drug-like molecules in the HiPen dataset, the method accelerates the calculation of the free energy difference of switching from an FF to a DFTB3 potential by three orders of magnitude compared to standard free energy perturbation and by a factor of eight compared to previously published nonequilibrium calculations. Our results suggest that our method, in combination with efficient QM/MM calculations, may be used in lead optimization campaigns in drug discovery and to study protein-ligand molecular recognition processes.


Subject(s)
Proteins , Quantum Theory , Thermodynamics , Ligands , Entropy
10.
J Chem Theory Comput ; 19(17): 5649-5670, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37585703

ABSTRACT

Metadynamics is a popular enhanced sampling algorithm for computing the free energy landscape of rare events by using molecular dynamics simulation. Ten years ago, Tiwary and Parrinello introduced the infrequent metadynamics approach for calculating the kinetics of transitions across free energy barriers. Since then, metadynamics-based methods for obtaining rate constants have attracted significant attention in computational molecular science. Such methods have been applied to study a wide range of problems, including protein-ligand binding, protein folding, conformational transitions, chemical reactions, catalysis, and nucleation. Here, we review the principles of elucidating kinetics from metadynamics-like approaches, subsequent methodological developments in this area, and successful applications on chemical, biological, and material systems. We also highlight the challenges of reconstructing accurate kinetics from enhanced sampling simulations and the scope of future developments.

11.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37409767

ABSTRACT

Identifying a reduced set of collective variables is critical for understanding atomistic simulations and accelerating them through enhanced sampling techniques. Recently, several methods have been proposed to learn these variables directly from atomistic data. Depending on the type of data available, the learning process can be framed as dimensionality reduction, classification of metastable states, or identification of slow modes. Here, we present mlcolvar, a Python library that simplifies the construction of these variables and their use in the context of enhanced sampling through a contributed interface to the PLUMED software. The library is organized modularly to facilitate the extension and cross-contamination of these methodologies. In this spirit, we developed a general multi-task learning framework in which multiple objective functions and data from different simulations can be combined to improve the collective variables. The library's versatility is demonstrated through simple examples that are prototypical of realistic scenarios.

12.
J Chem Phys ; 158(20)2023 May 28.
Article in English | MEDLINE | ID: mdl-37212403

ABSTRACT

The study of the rare transitions that take place between long lived metastable states is a major challenge in molecular dynamics simulations. Many of the methods suggested to address this problem rely on the identification of the slow modes of the system, which are referred to as collective variables. Recently, machine learning methods have been used to learn the collective variables as functions of a large number of physical descriptors. Among many such methods, Deep Targeted Discriminant Analysis has proven to be useful. This collective variable is built from data harvested from short unbiased simulations in the metastable basins. Here, we enrich the set of data on which the Deep Targeted Discriminant Analysis collective variable is built by adding data from the transition path ensemble. These are collected from a number of reactive trajectories obtained using the On-the-fly Probability Enhanced Sampling flooding method. The collective variables thus trained lead to more accurate sampling and faster convergence. The performance of these new collective variables is tested on a number of representative examples.

13.
Pharmaceutics ; 14(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36559081

ABSTRACT

A key step in the development of a new drug, is the design of drug-excipient complexes that lead to optimal drug release kinetics. Computational chemistry and specifically enhanced sampling molecular dynamics methods can play a key role in this context, by minimizing the need for expensive experiments, and reducing cost and time. Here we show that recent advances in enhanced sampling methodologies can be brought to fruition in this area. We demonstrate the potential of these methodologies by simulating the drug release kinetics of the complex praziquantel-montmorillonite in water. Praziquantel finds promising applications in the treatment of schistosomiasis, but its biopharmaceutical profile needs to be improved, and a cheap material such as the montmorillonite clay would be a very convenient excipient. We simulate the drug release both from surface and interlayer space, and find that the diffusion of the praziquantel inside the interlayer space is the process that limits the rate of drug release.

14.
J Am Chem Soc ; 144(42): 19265-19271, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36222799

ABSTRACT

Advances in the evolving field of atomistic simulations promise important insights for the design and fundamental understanding of novel molecular photoswitches. Here, we use state-of-the-art enhanced simulation techniques to unravel the complex, multistep chemistry of donor-acceptor Stenhouse adducts (DASAs). Our reaction discovery workflow consists of enhanced sampling for efficient chemical space exploration, refinement of newly observed pathways with more accurate ab initio electronic structure calculations, and structural modifications to introduce design principles within future generations of DASAs. We showcase our discovery workflow by not only recovering the full photoswitching mechanism of DASA but also predicting a plethora of new plausible thermal pathways and suggesting a way for their experimental validation. Furthermore, we illustrate the tunability of these newly discovered reactions, leading to a potential avenue for controlling DASA dynamics through multiple external stimuli. Overall, these insights could offer alternative routes to increase the efficiency and control of DASA's photoswitching mechanism, providing new elements to design more complex light-responsive materials.


Subject(s)
Computer Simulation , Models, Molecular
15.
J Chem Theory Comput ; 18(11): 6500-6509, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36194840

ABSTRACT

We introduce a novel enhanced sampling approach named on-the-fly probability enhanced sampling (OPES) flooding for calculating the kinetics of rare events from atomistic molecular dynamics simulation. This method is derived from the OPES approach [Invernizzi and Parrinello, J. Phys. Chem. Lett. 2020, 11, 7, 2731-2736], which has been recently developed for calculating converged free energy surfaces for complex systems. In this paper, we describe the theoretical details of the OPES flooding technique and demonstrate the application on three systems of increasing complexity: barrier crossing in a two-dimensional double-well potential, conformational transition in the alanine dipeptide in the gas phase, and the folding and unfolding of the chignolin polypeptide in an aqueous environment. From extensive tests, we show that the calculation of accurate kinetics not only requires the transition state to be bias-free, but the amount of bias deposited should also not exceed the effective barrier height measured along the chosen collective variables. In this vein, the possibility of computing rates from biasing suboptimal order parameters has also been explored. Furthermore, we describe the choice of optimum parameter combinations for obtaining accurate results from limited computational effort.


Subject(s)
Dipeptides , Molecular Dynamics Simulation , Kinetics , Entropy , Dipeptides/chemistry , Molecular Conformation
16.
Nat Commun ; 13(1): 5438, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114175

ABSTRACT

The process of ligand-protein unbinding is crucial in biophysics. Water is an essential part of any biological system and yet, many aspects of its role remain elusive. Here, we simulate with state-of-the-art enhanced sampling techniques the binding of Benzamidine to Trypsin which is a much studied and paradigmatic ligand-protein system. We use machine learning methods to determine efficient collective coordinates for the complex non-local network of water. These coordinates are used to perform On-the-fly Probability Enhanced Sampling simulations, which we adapt to calculate also the ligand residence time. Our results, both static and dynamic, are in good agreement with experiments. We find that the presence of a water molecule located at the bottom of the binding pocket allows via a network of hydrogen bonds the ligand to be released into the solution. On a finer scale, even when unbinding is allowed, another water molecule further modulates the exit time.


Subject(s)
Benzamidines , Water , Benzamidines/chemistry , Ligands , Protein Binding , Proteins/metabolism , Trypsin/chemistry
17.
J Chem Theory Comput ; 18(9): 5195-5202, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35920063

ABSTRACT

Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature are becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, chignolin and bovine pancreatic trypsin inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.


Subject(s)
Machine Learning , Proteins , Animals , Aprotinin , Cattle , Molecular Conformation
18.
J Chem Theory Comput ; 18(8): 4952-4959, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35833664

ABSTRACT

We combine molecular dynamics simulations with experiments to estimate solubilities of an organic salt in complex growth environments. We predict the solubility by simulations of the growth and dissolution of ions at the crystal surface kink sites at different solution concentrations. Thereby, the solubility is identified as the solution's salt concentration, where the energy of the ion pair dissolved in solution equals the energy of the ion pair crystallized at the kink sites. The simulation methodology is demonstrated for the case of anhydrous sodium acetate crystallized from various solvent-antisolvent mixtures. To validate the predicted solubilities, we have measured the solubilities of sodium acetate in-house, using an experimental setup and measurement protocol that guarantees moisture-free conditions, which is key for a hygroscopic compound like sodium acetate. We observe excellent agreement between the experimental and the computationally evaluated solubilities for sodium acetate in different solvent-antisolvent mixtures. Given the agreement and the rich data the simulations produce, we can use them to complement experimental tasks, which in turn will reduce time and capital in the design of complicated industrial crystallization processes of organic salts.


Subject(s)
Molecular Dynamics Simulation , Salts , Ions , Sodium Acetate , Solubility , Solvents/chemistry
19.
J Chem Theory Comput ; 18(6): 3988-3996, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35617155

ABSTRACT

In adaptive-bias enhanced sampling methods, a bias potential is added to the system to drive transitions between metastable states. The bias potential is a function of a few collective variables and is gradually modified according to the underlying free energy surface. We show that when the collective variables are suboptimal, there is an exploration-convergence tradeoff, and one must choose between a quickly converging bias that will lead to fewer transitions or a slower to converge bias that can explore the phase space more efficiently but might require a much longer time to produce an accurate free energy estimate. The recently proposed on-the-fly probability enhanced sampling (OPES) method focuses on fast convergence, but there are cases where fast exploration is preferred instead. For this reason, we introduce a new variant of the OPES method that focuses on quickly escaping metastable states at the expense of convergence speed. We illustrate the benefits of this approach in prototypical systems and show that it outperforms the popular metadynamics method.


Subject(s)
Molecular Dynamics Simulation , Bias , Entropy , Probability
20.
J Chem Theory Comput ; 18(3): 1314-1319, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35200023

ABSTRACT

The long time scale associated with ligand residence times renders their computation challenging. Therefore, the influence of factors like solvation and steric hindrance on residence times is not fully understood. Here, we demonstrate in a set of model host-guest systems that the recently developed Gaussian mixture based enhanced sampling allows residence times to be computed and enables an understanding of their unbinding mechanism. We observe that guest unbinding often proceeds via a series of intermediate states that can be labeled by the number of water molecules present in the binding cavity. In several cases the residence time is correlated to the water trapping times in the cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...