Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 20(4): 3438-3463, 2021 07.
Article in English | MEDLINE | ID: mdl-34151512

ABSTRACT

Meat is one of the most consumed agro-products because it contains proteins, minerals, and essential vitamins, all of which play critical roles in the human diet and health. Meat is a perishable food product because of its high moisture content, and as such there are concerns about its quality, stability, and safety. There are two widely used methods for monitoring meat quality attributes: subjective sensory evaluation and chemical/instrumentation tests. However, these methods are labor-intensive, time-consuming, and destructive. To overcome the shortfalls of these conventional approaches, several researchers have developed fast and nondestructive techniques. Recently, electronic nose (e-nose), computer vision (CV), spectroscopy, hyperspectral imaging (HSI), and multispectral imaging (MSI) technologies have been explored as nondestructive methods in meat quality and safety evaluation. However, most of the studies on the application of these novel technologies are still in the preliminary stages and are carried out in isolation, often without comprehensive information on the most suitable approach. This lack of cohesive information on the strength and shortcomings of each technique could impact their application and commercialization for the detection of important meat attributes such as pH, marbling, or microbial spoilage. Here, we provide a comprehensive review of recent nondestructive technologies (e-nose, CV, spectroscopy, HSI, and MSI), as well as their applications and limitations in the detection and evaluation of meat quality and safety issues, such as contamination, adulteration, and quality classification. A discussion is also included on the challenges and future outlooks of the respective technologies and their various applications.


Subject(s)
Food Contamination , Meat , Electronic Nose , Food Contamination/analysis , Humans , Meat/analysis , Spectrum Analysis
2.
Foods ; 9(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674380

ABSTRACT

In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers' expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects' attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods' application in the detection and classification of insect infestation in fruits and vegetables.

SELECTION OF CITATIONS
SEARCH DETAIL
...