Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Article in English | MEDLINE | ID: mdl-29619117

ABSTRACT

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

2.
Environ Sci Technol ; 47(14): 7855-61, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23763377

ABSTRACT

Concern is growing about the effects of urbanization on air pollution and health. Nitrogen dioxide (NO2) released primarily from combustion processes, such as traffic, is a short-lived atmospheric pollutant that serves as an air-quality indicator and is itself a health concern. We derive a global distribution of ground-level NO2 concentrations from tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI). Local scaling factors from a three-dimensional chemistry-transport model (GEOS-Chem) are used to relate the OMI NO2 columns to ground-level concentrations. The OMI-derived surface NO2 data are significantly correlated (r = 0.69) with in situ surface measurements. We examine how the OMI-derived ground-level NO2 concentrations, OMI NO2 columns, and bottom-up NOx emission inventories relate to urban population. Emission hot spots, such as power plants, are excluded to focus on urban relationships. The correlation of surface NO2 with population is significant for the three countries and one continent examined here: United States (r = 0.71), Europe (r = 0.67), China (r = 0.69), and India (r = 0.59). Urban NO2 pollution, like other urban properties, is a power law scaling function of the population size: NO2 concentration increases proportional to population raised to an exponent. The value of the exponent varies by region from 0.36 for India to 0.66 for China, reflecting regional differences in industrial development and per capita emissions. It has been generally established that energy efficiency increases and, therefore, per capita NOx emissions decrease with urban population; here, we show how outdoor ambient NO2 concentrations depend upon urban population in different global regions.


Subject(s)
Air Pollutants/analysis , Nitrogen Dioxide/analysis , Urban Population , Models, Theoretical
3.
Science ; 331(6022): 1295-9, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21393539

ABSTRACT

A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.

4.
Nature ; 463(7279): 344-8, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20090751

ABSTRACT

In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.


Subject(s)
Atmosphere/chemistry , Ozone/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Asia , Ecosystem , Greenhouse Effect , History, 20th Century , History, 21st Century , North America , Ozone/chemical synthesis , Ozone/chemistry , Sample Size , Seasons
5.
Environ Sci Technol ; 43(7): 2437-42, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19452898

ABSTRACT

A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.


Subject(s)
Air Pollutants/analysis , Ethylenes/analysis , Spectrum Analysis/methods , Acoustics
6.
J Environ Monit ; 5(1): 35-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12619754

ABSTRACT

Elevated carbon monoxide (CO) mixing ratios in excess of those derived from emissions inventories have been observed in plumes from one gas- and coal-fired power plant and three of four lignite coal-fired electric utility power plants observed in east and central Texas. Observations of elevated CO on days characterized by differing wind directions show that CO emissions from the lignite plants were relatively constant over time and cannot be ascribed to separate sources adjacent to the power plants. These three plants were found to be emitting CO at rates 22 to 34 times those tabulated in State and Federal emissions inventories. Elevated CO emissions from the gas- and coal-fired plant were highly variable on time scales of hours to days, in one case changing by a factor of 8 within an hour. Three other fossil-fueled power plants, including one lignite-fired plant observed during this study, did not emit substantial amounts of CO, suggesting that a combination of plant operating conditions and the use of lignite coal may contribute to the enhanced emissions. Observed elevated CO emissions from the three lignite plants, if representative of average operating conditions, represent an additional 30% of the annual total CO emissions from point sources for the state of Texas.


Subject(s)
Air Pollutants/analysis , Carbon Monoxide/analysis , Fossil Fuels , Power Plants , Coal , Environmental Monitoring , Texas
7.
Science ; 292(5517): 719-23, 2001 Apr 27.
Article in English | MEDLINE | ID: mdl-11326097

ABSTRACT

Data taken in aircraft transects of emissions plumes from rural U.S. coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NO(x) (NO plus NO(2)) concentration, which is determined by plant NO(x) emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modulate ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NO(x) and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NO(x) emission rates and geographic locations in current and future U.S. ozone control strategies could substantially enhance the efficacy of NO(x) reductions from these sources.

8.
Fundam Appl Toxicol ; 35(2): 197-204, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9038241

ABSTRACT

Many marketed pharmaceuticals are known to cause idiosyncratic agranulocytosis in humans. Similarly prinomide, an antiinflammatory drug, was associated with a low incidence of agranulocytosis (<0.3%) in clinical trials, even though chronic toxicity studies in rodents and primates showed no evidence of agranulocytosis with either prinomide or its parahydroxy metabolite, CGS 12094. To investigate mechanisms for this human specific toxicity, experiments were conducted to study the metabolism of prinomide and CGS 12094 by myeloperoxidase (MPO), a major enzyme of neutrophils and leukocyte progenitor cells. Although prinomide was not metabolized by human MPO, CGS 12094 was rapidly metabolized (>90%; 2 min); this reaction was dependent on H2O2 and MPO and was inhibited by azide. During the MPO-catalyzed metabolism of CGS 12094, reactive intermediates that irreversibly bound to protein and cysteine were generated. One of the reactive metabolites generated was identified by mass spectroscopy and trapping with cysteine as 1,4-benzoquinone, a compound implicated in the myelotoxicity associated with benzene. Thus during conditions which lead to elevated levels of H2O2 (e.g., active inflammation), CGS 12094 is rapidly metabolized by MPO to reactive intermediates that may be related to prinomide-induced agranulocytosis.


Subject(s)
Agranulocytosis/enzymology , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Benzoquinones/metabolism , Peroxidase/metabolism , Pyrroles/pharmacokinetics , Biotransformation/drug effects , Chromatography, High Pressure Liquid , Free Radicals/metabolism , Humans , Mass Spectrometry , Protein Binding , Serum Albumin/metabolism , Spectrophotometry, Ultraviolet
9.
Carcinogenesis ; 18(2): 279-86, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9054619

ABSTRACT

A DNA endonuclease, isolated from the nuclei of normal human and xeroderma pigmentosum complementation group A (XPA) cells, which recognizes predominately pyrimidine dimers, was examined for the mechanism by which it locates sites of damage on UVC-irradiated DNA. In reaction mixtures with low ionic strengths (i.e. lacking KCl), the normal and XPA endonuclease locate sites of UV damage on both naked and reconstituted nucleosomal DNA by different mechanisms. On both of these substrates, the normal endonuclease acts by a processive mechanism, meaning that it binds non-specifically to DNA and scans the DNA for sites of damage, whereas the XPA endonuclease acts by a distributive one, meaning that it randomly locates sites of damage on DNA. However, while both the normal and XPA endonucleases can incise UVC irradiated naked DNA, they differ in ability to incise damaged nucleosomal DNA. The normal endonuclease showed increased activity on UVC treated nucleosomal DNA compared with naked DNA, whereas the XPA endonuclease showed decreased activity on the damaged nucleosomal substrate. Since a processive mechanism of action is sensitive to the ionic strength of the micro-environment, the KCl concentration of the reaction was increased. At 70 mM KCI, the normal endonuclease switched to a distributive mechanism of action and its ability to incise damaged nucleosomal DNA also decreased. These studies show that there is a correlation between the ability of these endonucleases to act by a processive mechanism and their ability to incise damaged nucleosomal DNA; the normal endonuclease, which acts processively, can incise damaged nucleosomal DNA, whereas the XPA endonuclease, which acts distributively, is defective in ability to incise this substrate.


Subject(s)
DNA Damage , DNA Ligases/physiology , DNA Repair/physiology , Endonucleases/physiology , Nucleosomes/genetics , Cell Line , DNA/drug effects , DNA/radiation effects , Humans , Nucleosomes/drug effects , Nucleosomes/radiation effects , Xeroderma Pigmentosum/enzymology , Xeroderma Pigmentosum/genetics
10.
Biochem Biophys Res Commun ; 230(3): 587-91, 1997 Jan 23.
Article in English | MEDLINE | ID: mdl-9015367

ABSTRACT

We have previously isolated from Fanconi anemia, complementation groups A (FA-A) and D (FA-D) cells, a DNA endonuclease complex which is defective in its ability to incise DNA containing interstrand cross-links produced by psoralen plus UVA light. The repair capabilities of the FA complexes, compared with those of the corresponding normal complex, have now been examined using two types of complementation analysis. First, introduction of the normal complex, by electroporation, into 8-methoxypsoralen (8-MOP) plus UVA treated FA-A and FA-D cells resulted in correction of their repair defect, determined by measuring repair-related unscheduled DNA synthesis (UDS). The FA-A and FA-D complexes could similarly complement the repair defect in each others' cells, but not in their own. Second, mixing the normal with the FA-A and FA-D complexes, or the FA-A with the FA-D complex, in a cell-free system resulted in correction of the defect in ability of these FA complexes to incise damaged DNA. These results indicate that the normal complex contains the proteins needed to correct the DNA repair defect in FA-A and FA-D cells and that the FA-A and FA-D complexes contain the protein needed to complement the repair defect in each other.


Subject(s)
DNA Repair , Fanconi Anemia/genetics , Cell Line, Transformed , Cell-Free System/enzymology , DNA/biosynthesis , Electroporation , Endodeoxyribonucleases/genetics , Fanconi Anemia/enzymology , Genetic Complementation Test , Humans , Lymphocytes/enzymology
12.
Science ; 259(5100): 1436-9, 1993 Mar 05.
Article in English | MEDLINE | ID: mdl-17801277

ABSTRACT

Measurement of the levels of ozone and carbon monoxide (a tracer of anthropogenic pollution) at three surface sites on the Atlantic coast of Canada allow the estimation of the amount of ozone photochemically produced from anthropogenic precursors over North America and transported to the lower troposphere over the temperate North Atlantic Ocean. This amount is greater than that injected from the stratosphere, the primary natural source of ozone. This conclusion supports the contention that ozone derived from anthropogenic pollution has a hemisphere-wide effect at northern temperate latitudes.

13.
Biochem Biophys Res Commun ; 189(2): 782-9, 1992 Dec 15.
Article in English | MEDLINE | ID: mdl-1472050

ABSTRACT

A DNA endonuclease complex which recognizes predominantly pyrimidine dimers in UVC irradiated DNA has been isolated from the chromatin of normal human and xeroderma pigmentosum, complementation group D (XPD) lymphoblastoid cells. The activity of the normal complex on UVC irradiated DNA was increased approximately 2.5 and 1.5 fold over activity on damaged naked DNA, when core (histones H2A, H2B, H3, H4) and total (core+histone H1) nucleosomal DNA, respectively, was used. In contrast, the XPD complex showed no increase in activity on UVC irradiated total and only a 1.4 fold increase on UVC irradiated core nucleosomal DNA, indicating that the XPD complex is defective in its ability to incise UVC irradiated nucleosomal DNA. The normal complex was able to correct this defect in the XPD complex at the nucleosomal level.


Subject(s)
DNA/metabolism , Endodeoxyribonucleases/isolation & purification , Endodeoxyribonucleases/metabolism , Nucleosomes/metabolism , Pyrimidine Dimers , Xeroderma Pigmentosum/enzymology , Cell Line , Chromatin/enzymology , Chromatography, Ion Exchange , DNA/chemistry , DNA/radiation effects , DNA Repair , Histones/metabolism , Humans , Isoelectric Focusing , Lymphocytes , Plasmids , Substrate Specificity , Ultraviolet Rays
14.
Mutat Res ; 273(2): 157-70, 1992 Mar.
Article in English | MEDLINE | ID: mdl-1372099

ABSTRACT

Two DNA endonuclease complexes have been isolated from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells which are active on DNA damaged with psoralen plus long wavelength ultraviolet radiation (UVA). In both normal and XPA cells, one endonuclease complex, pI 4.6, recognizes the psoralen cross-link and the other endonuclease complex, pI 7.6, recognizes the psoralen monoadduct. The levels of activity of these complexes from both normal and XPA cells are similar on damaged naked DNA. Kinetic analysis of assays using graduated concentrations of substrate revealed that selective activity of these endonuclease complexes on 8-MOP plus UVA treated DNA correlates with a reduction in Km of these complexes, indicating an increased affinity for, or rate of association with, damaged naked DNA. When the damaged substrates were reconstituted into core nucleosomes (without histone H1), both normal endonuclease complexes showed a 2.5-fold enhancement of activity, which correlated kinetically with a further increase in affinity, or rate of association (decreased Km), for this damaged nucleosomal substrate. This increase in activity and in affinity was reduced but not eliminated when histone H1 was present. By contrast, neither XPA endonuclease complex showed this enhanced activity on, or affinity for, damaged core nucleosomal DNA, and actually showed decreased activity, and affinity, when histone H1 was present. Introduction, via electroporation, of either of the normal complexes into 8-MOP plus UVA treated XPA cells in culture corrected their DNA-repair defect, further confirming the role of these complexes in the repair process.


Subject(s)
DNA/metabolism , Deoxyribonuclease I/metabolism , Ficusin/pharmacology , Xeroderma Pigmentosum/enzymology , Cell Line, Transformed , DNA/radiation effects , DNA Damage , Genetic Complementation Test , Histones/isolation & purification , Humans , Kinetics , Nucleosomes/metabolism , Plasmids , Ultraviolet Rays
15.
Mutat Res ; 273(1): 57-71, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1376436

ABSTRACT

Cells from patients with the inherited disorder, Fanconi's anemia (FA), were analyzed for endonucleases which recognize DNA interstrand cross-links and monoadducts produced by psoralen plus UVA irradiation. Two chromatin-associated DNA endonuclease activities, defective in their ability to incise DNA-containing adducts produced by psoralen plus UVA light, have been identified and isolated in nuclei of FA cells. In FA complementation group A (FA-A) cells, one endonuclease activity, pI 4.6, which recognizes psoralen intercalation and interstrand cross-links, has 25% of the activity of the normal human endonuclease, pI 4.6, on 8-methoxypsoralen (8-MOP) plus UVA-damaged DNA. In FA complementation group B (FA-B) cells, a second endonuclease activity, pI 7.6, which recognizes psoralen monoadducts, has 50% and 55% of the activity, respectively, of the corresponding normal endonuclease on 8-MOP or angelicin plus UVA-damaged DNA. Kinetic analysis reveals that both the FA-A endonuclease activity, pI 4.6, and the FA-B endonuclease activity, pI 7.6, have decreased affinity for psoralen plus UVA-damaged DNA. Both the normal and FA endonucleases showed approximately a 2.5-fold increase in activity on psoralen plus UVA-damaged reconstituted nucleosomal DNA compared to damaged non-nucleosomal DNA, indicating that interaction of these FA endonucleases with nucleosomal DNA is not impaired. These deficiencies in two nuclear DNA endonuclease activities from FA-A and FA-B cells correlate with decreased levels of unscheduled DNA synthesis (UDS), in response to 8-MOP or angelicin plus UVA irradiation, in these cells in culture.


Subject(s)
Deoxyribonucleases/metabolism , Fanconi Anemia/enzymology , Cell Line , DNA/drug effects , DNA/metabolism , DNA/radiation effects , DNA Repair , Densitometry , Ficusin , Furocoumarins/metabolism , Genetic Complementation Test , Humans , Intercalating Agents/metabolism , Kinetics , Methoxsalen , Ultraviolet Rays
16.
Mutat Res ; 235(2): 65-80, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2308593

ABSTRACT

The influence of nucleosome structure on the activity of 2 chromatin-associated DNA endonucleases, pIs 4.6 and 7.6, from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined on DNA containing either psoralen monoadducts or cross-links. As substrate a reconstituted nucleosomal system was utilized consisting of a plasmid DNA and either core (H2A, H2B, H3, H4), or total (core plus H1) histones from normal or XPA cells. Both non-nucleosomal and nucleosomal DNA were treated with 8-methoxypsoralen (8-MOP) plus long-wavelength ultraviolet radiation (UVA), which produces monoadducts and DNA interstrand cross-links, and angelicin plus UVA, which produces monoadducts. Both normal endonucleases were over 2-fold more active on both types of psoralen-plus-UVA-damaged core nucleosomal DNA than on damaged non-nucleosomal DNA. Addition of histone H1 to the system reduced but did not abolish this increase. By contrast, neither XPA endonuclease showed any increase on psoralen-treated nucleosomal DNA, with or without histone H1. Mixing the normal with the XPA endonucleases led to complementation of the XPA defect. These results indicate that interaction of these endonucleases with chromatin is of critical importance and that it is at this level that a defect exists in XPA endonucleases.


Subject(s)
Chromatin/enzymology , DNA/metabolism , Endodeoxyribonucleases/metabolism , Nucleosomes/metabolism , Xeroderma Pigmentosum/enzymology , Cell Line , DNA/drug effects , DNA/radiation effects , DNA Damage , DNA Repair , Furocoumarins/pharmacology , Histones/isolation & purification , Humans , Methoxsalen/pharmacology , Plasmids/genetics , Substrate Specificity , Ultraviolet Rays , Xeroderma Pigmentosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...