Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 297(2): 100913, 2021 08.
Article in English | MEDLINE | ID: mdl-34175310

ABSTRACT

Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5'-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.


Subject(s)
Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Leishmania/enzymology , Leishmaniasis/pathology , RNA, Transfer/genetics , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Animals , Cytosol/metabolism , Humans , Leishmania/isolation & purification , Leishmaniasis/enzymology , Leishmaniasis/parasitology , Mitochondria/metabolism , Phylogeny , RNA, Transfer/metabolism , Sequence Homology, Amino Acid
2.
Proc Natl Acad Sci U S A ; 117(47): 29851-29861, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33168716

ABSTRACT

Kinetoplastids are unicellular eukaryotic parasites responsible for such human pathologies as Chagas disease, sleeping sickness, and leishmaniasis. They have a single large mitochondrion, essential for the parasite survival. In kinetoplastid mitochondria, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes. Structural studies performed in Trypanosoma brucei already highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit. However, several important aspects mainly related to the large subunit (LSU) remain elusive, such as the structure and maturation of its ribosomal RNA. Here we present a cryo-electron microscopy study of the protozoans Leishmania tarentolae and Trypanosoma cruzi mitoribosomes. For both species, we obtained the structure of their mature mitoribosomes, complete rRNA of the LSU, as well as previously unidentified ribosomal proteins. In addition, we introduce the structure of an LSU assembly intermediate in the presence of 16 identified maturation factors. These maturation factors act on both the intersubunit and the solvent sides of the LSU, where they refold and chemically modify the rRNA and prevent early translation before full maturation of the LSU.


Subject(s)
Leishmania/physiology , Mitochondrial Ribosomes/ultrastructure , RNA Processing, Post-Transcriptional/physiology , Ribosome Subunits, Large, Eukaryotic/metabolism , Trypanosoma cruzi/physiology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Cryoelectron Microscopy , Humans , Leishmania/cytology , Leishmania/drug effects , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Mitochondrial Ribosomes/drug effects , Mitochondrial Ribosomes/metabolism , Models, Molecular , RNA Processing, Post-Transcriptional/drug effects , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , Trypanosoma cruzi/cytology , Trypanosoma cruzi/drug effects
3.
Nat Commun ; 11(1): 5195, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060577

ABSTRACT

Mitochondria are the powerhouses of eukaryotic cells and the site of essential metabolic reactions. Complex I or NADH:ubiquinone oxidoreductase is the main entry site for electrons into the mitochondrial respiratory chain and constitutes the largest of the respiratory complexes. Its structure and composition vary across eukaryote species. However, high resolution structures are available only for one group of eukaryotes, opisthokonts. In plants, only biochemical studies were carried out, already hinting at the peculiar composition of complex I in the green lineage. Here, we report several cryo-electron microscopy structures of the plant mitochondrial complex I. We describe the structure and composition of the plant respiratory complex I, including the ancestral mitochondrial domain composed of the carbonic anhydrase. We show that the carbonic anhydrase is a heterotrimeric complex with only one conserved active site. This domain is crucial for the overall stability of complex I as well as a peculiar lipid complex composed of cardiolipin and phosphatidylinositols. Moreover, we also describe the structure of one of the plant-specific complex I assembly intermediates, lacking the whole PD module, in presence of the maturation factor GLDH. GLDH prevents the binding of the plant specific P1 protein, responsible for the linkage of the PP to the PD module.


Subject(s)
Cryoelectron Microscopy/methods , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Arabidopsis/metabolism , Brassica , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Cardiolipins/metabolism , Gene Expression Regulation, Plant , Mitochondrial Membranes/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation , Proteomics
4.
Hum Mol Genet ; 28(5): 751-763, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30388220

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is among the most common monogenic disorders mainly associated with PKD1/PC1 mutations. We show herein that renal regulation in Pc1 dosage-reduced and -increased mouse models converge toward stimulation of c-Myc expression along with ß-catenin, delineating c-Myc as a key Pkd1 node in cystogenesis. Enhanced renal c-Myc-induced ADPKD in SBM transgenic mice lead conversely to striking upregulation of Pkd1/Pc1 expression and ß-catenin activation, lending credence for reciprocal crosstalk between c-Myc and Pc1. In adult SBM kidneys, c-Myc is strongly enriched on Pkd1 promoter with RNA pol II, consistent with Pkd1 upregulation during cystogenesis. Similar c-Myc direct binding at birth uncovers an equivalent role on Pkd1 regulation during renal developmental program. Concurrent with enriched c-Myc binding, recruitment of active chromatin modifying co-factors by c-Myc at the Pkd1 regulatory region probably opens chromatin to stimulate transcription. A similar transcriptional activation by c-Myc is also likely operant on endogenous human PKD1 gene from our transactivation analysis in response to human c-MYC upregulation. Genetic ablation of c-Myc in Pc1-reduced and -increased mouse models significantly attenuates cyst growth, proliferation and PKD progression. Our study determined a dual role for c-Myc, as a major contributor in Pc1-induced cystogenesis and in a feed-forward regulatory Pkd1-c-Myc loop mechanism that may also prevail in human ADPKD.


Subject(s)
Gene Expression Regulation , Genetic Predisposition to Disease , Proto-Oncogene Proteins c-myc/metabolism , TRPP Cation Channels/genetics , Animals , Base Sequence , Binding Sites , Biomarkers , Cell Line , Disease Models, Animal , Disease Progression , Gene Dosage , Genetic Association Studies , Humans , Immunohistochemistry , Mice , Mice, Knockout , Models, Biological , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Protein Binding , Signal Transduction , TRPP Cation Channels/metabolism , Transcription, Genetic
5.
J Biomed Mater Res A ; 104(6): 1425-36, 2016 06.
Article in English | MEDLINE | ID: mdl-26845245

ABSTRACT

Continuous glucose monitoring is an efficient method for the management of diabetes and in limiting the complications induced by large fluctuations in glucose levels. For this, intravascular systems may assist in producing more reliable and accurate devices. However, neovascularization is a key factor to be addressed in improving their biocompatibility. In this scope, the perennial modification of the surface of an implant with the proangiogenic Vascular Endothelial Growth Factor mimic peptide (SVVYGLR peptide sequence) holds great promise. Herein, we report on the preparation of gold substrates presenting the covalently grafted SVVYGLR peptide sequence and their effect on HUVEC behavior. Effective coupling was demonstrated using XPS and PM-IRRAS. The produced surfaces were shown to be beneficial for HUVEC adhesion. Importantly, surface bound SVVYGLR is able to maintain HUVEC proliferation even in the absence of soluble VEGF. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1425-1436, 2016.


Subject(s)
Human Umbilical Vein Endothelial Cells/cytology , Peptides/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Amino Acid Sequence , Blotting, Western , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Peptides/chemistry , Photoelectron Spectroscopy , Solubility , Surface Properties
6.
Transcription ; 5(1): e27526, 2014.
Article in English | MEDLINE | ID: mdl-25764111

ABSTRACT

Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.


Subject(s)
Gene Expression Regulation , RNA Polymerase III/physiology , Transcription, Genetic , Humans , Models, Genetic , Promoter Regions, Genetic , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Small Untranslated/biosynthesis , RNA, Small Untranslated/genetics , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...