Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1768(12): 3029-35, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18001693

ABSTRACT

The effect of deuteration on the 13C linewidths of U-13C, 15N 2D crystalline bacteriorhodopsin (bR) from Halobacterium salinarium, a 248-amino acid protein with seven-transmembrane (7TM) spanning regions, has been studied in purple membranes as a prelude to potential structural studies. Spectral doubling of resonances was observed for receptor expressed in 2H medium (for both 50:50% 1H:2H, and a more highly deuterated form) with the resonances being of similar intensities and separated by <0.3 ppm in the methyl spectral regions in which they were readily distinguished. Line-widths of the methyl side chains were not significantly altered when the protein was expressed in highly deuterated medium compared to growth in fully protonated medium (spectral line widths were about 0.5 ppm on average for receptor expressed both in the fully protonated and highly deuterated media from the C delta, C gamma 1, and C gamma 2 Ile 13C signals observed in the direct, 21-39 ppm, and indirect, 9-17 ppm, dimensions). The measured 13C NMR line-widths observed for both protonated and deuterated form of the receptor are sufficiently narrow, indicating that this crystalline protein morphology is suitable for structural studies. 1) decoupling comparison of the protonated and deuterated bR imply that deuteration may be advantageous for samples in which low power 1H decoupling is required.


Subject(s)
Bacteriorhodopsins/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes , Crystallography/methods , Deuterium , Halobacterium salinarum/metabolism , Purple Membrane/metabolism
2.
J Med Chem ; 44(17): 2707-18, 2001 Aug 16.
Article in English | MEDLINE | ID: mdl-11495583

ABSTRACT

Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure-activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound 1 and led to the following observations: (i) introduction of a lipophilic environment in the C-5 position of the pyridazine ring is favorable for the AChE-inhibitory activity and the AChE/BuChE selectivity; (ii) substitution and various replacements of the C-6 phenyl group are possible and led to equivalent or slightly more active derivatives; (iii) isosteric replacements or modifications of the benzylpiperidine moiety are detrimental to the activity. Among all derivatives prepared, the indenopyridazine derivative 4g was found to be the more potent inhibitor with an IC(50) of 10 nM on electric eel AChE. Compared to compound 1, this represents a 12-fold increase in potency. Moreover, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-5-methyl-6-phenylpyridazine 4c, which showed an IC(50) of 21 nM, is 100-times more selective for human AChE (human BuChE/AChE ratio of 24) than the reference compound tacrine.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Piperidines/chemical synthesis , Pyridazines/chemical synthesis , Pyridines/chemical synthesis , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Drug Design , Electrophorus/metabolism , Models, Molecular , Molecular Conformation , Piperidines/chemistry , Pyridazines/chemistry , Pyridines/chemistry , Structure-Activity Relationship , Torpedo/metabolism
3.
J Comput Aided Mol Des ; 15(5): 395-410, 2001 May.
Article in English | MEDLINE | ID: mdl-11394735

ABSTRACT

The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2LOO = 0.937, q2L50%O = 0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.


Subject(s)
Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Drug Design , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Animals , Binding Sites , Computer Simulation , Crystallography, X-Ray , Donepezil , Humans , Indans/chemistry , Indans/pharmacology , Models, Molecular , Piperidines/chemistry , Piperidines/pharmacology , Protein Conformation , Quantitative Structure-Activity Relationship , Thermodynamics , Torpedo
SELECTION OF CITATIONS
SEARCH DETAIL
...