Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 120(4): 2036-2048, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30089021

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) regulate information transfer across the main olfactory bulb by instituting a high-pass intensity filter allowing for the filtering out of weak inputs. Excitation-driven inhibition of the glomerular microcircuit via GABA release from periglomerular cells appears to underlie this effect of nAChR activation. The multiplicity of nAChR subtypes and cellular locations raises questions about their respective roles in mediating their effects on the glomerular output. In this study, we address this issue by targeting heteromeric nAChRs using receptor knockouts (KOs) for the two dominant nAChR ß-subunit genes known to be expressed in the central nervous system. KOs of the ß2-nAChR subunit did not affect nAChR currents from mitral cells (MCs) but attenuated those from the external tufted (ET) cells. In slices from these animals, activation of nAChRs still effectively inhibited excitatory postsynaptic currents (EPSCs) and firing on MCs evoked by the olfactory nerve (ON) stimulation, thereby indicating that the filter mechanism was intact. On the other hand, recordings from ß4-KOs showed that nAChR responses from MCs were abolished and those from ET cells were attenuated. Excitation-driven feedback was abolished as was the effect of nAChR activation on ON-evoked EPSCs. Experiments using calcium imaging showed that one possible consequence of the ß2-subunit activation might be to alter the time course of calcium transients in juxtaglomerular neurons suggesting a role for these receptors in calcium signaling. Our results indicate that nAChRs containing the ß4-subunit are critical in the filtering of odor inputs and play a determinant role in the cholinergic modulation of glomerular output. NEW & NOTEWORTHY In this study, using receptor gene knockouts we examine the relative contributions of heteromeric nAChR subtypes located on different cell types to this effect of receptor activation. Our results demonstrate that nAChRs containing the ß4-subunit activate MCs resulting in feedback inhibition from glomerular interneurons. This period of inhibition results in the selective filtering of weak odor inputs providing one mechanism by which nAChRs can enhance discrimination between two closely related odors.


Subject(s)
Nerve Tissue Proteins/metabolism , Olfactory Bulb/metabolism , Receptors, Nicotinic/metabolism , Animals , Calcium Signaling , Excitatory Postsynaptic Potentials , Feedback, Physiological , Interneurons/metabolism , Interneurons/physiology , Mice , Mice, Inbred C57BL , Olfactory Bulb/cytology , Olfactory Bulb/physiology
2.
J Neurophysiol ; 110(7): 1544-53, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23843430

ABSTRACT

Olfactory bulb (OB) glomeruli, the initial sites of synaptic processing of odor information, exhibit high levels of nicotinic acetylcholine receptor (nAChR) expression and receive strong cholinergic input from the basal forebrain. The role of glomerular nAChRs in olfactory processing, however, remains to be elucidated. External tufted (ET) cells are a major source of excitation in the glomerulus and an important component of OB physiology. We have examined the role of nAChRs in modulating ET cell activity using whole-cell electrophysiology in mouse OB slices. We show here that the activation of glomerular nAChRs leads to direct ET cell excitation, as well as an increase in the frequency of spontaneous postsynaptic GABAergic currents. ß2-containing nAChRs, likely the α4ß2*-nAChR subtype (* represents the possible presence of other subunits), were significant contributors to these effects. The nAChR-mediated increase in spontaneous postsynaptic GABAergic current frequency on ET cells was, for the most part, dependent on glutamate receptor activation, thus implicating a role for excitation-dependent inhibition within the glomerulus. ß2-containing nAChRs also regulate the frequency of miniature inhibitory postsynaptic currents on ET cells, implying nicotinic modulation of dendrodendritic signaling between ET and periglomerular cells. Our data also indicate that nAChR activation does not affect spontaneous or evoked transmission at the olfactory nerve-to-ET cell synapse. The results from this study suggest that ET cells, along with mitral cells, play an important role in the nicotinic modulation of glomerular inhibition.


Subject(s)
Neurons/metabolism , Olfactory Bulb/physiology , Receptors, Nicotinic/metabolism , Synaptic Potentials , Action Potentials , Animals , Mice , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Receptors, Glutamate/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Proc Natl Acad Sci U S A ; 105(19): 6900-5, 2008 May 13.
Article in English | MEDLINE | ID: mdl-18443286

ABSTRACT

The bacterial potassium channel KcsA is gated by high concentrations of intracellular protons, allowing the channel to open at pH < 5.5. Despite prior attempts to determine the mechanism responsible for pH gating, the proton sensor has remained elusive. We have constructed a KcsA channel mutant that remains open up to pH 9.0 by replacing key ionizable residues from the N and C termini of KcsA with residues mimicking their protonated counterparts with respect to charge. A series of individual and combined mutations were investigated by using single-channel recordings in lipid bilayers. We propose that these residues are the proton-binding sites and at neutral pH they form a complex network of inter- and intrasubunit salt bridges and hydrogen bonds near the bundle crossing that greatly stabilize the closed state. In our model, these residues change their ionization state at acidic pH, thereby disrupting this network, modifying the electrostatic landscape near the channel gate, and favoring channel opening.


Subject(s)
Biosensing Techniques , Escherichia coli Proteins/chemistry , Models, Molecular , Potassium Channels/chemistry , Bacterial Proteins , Glutamic Acid/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Ion Channel Gating , Mutation/genetics , Potassium Channels, Voltage-Gated , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...