Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(4): 2030-2038, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38197455

ABSTRACT

Localized surface plasmon resonance in capacitively-coupled metallic nanoparticle dimers accompanied by a substantial local field enhancement in the interparticle gap area can enable boosting of nonlinear optical effects. In this paper, we analyze optical bistability in a plasmonic spherical dimer wrapped by a mutual nonlinear shell. In the common graphical post-processing technique of optical bistability, it is assumed that the refractive index change is homogeneous throughout the whole shell. However, we resolve this issue by taking into account the inhomogeneous nature of the power density in the dimer and linking the refractive index change to the local intensity inside the shell. The hysteresis branches of the normalized scattering and extinction cross-sections, as well as electric near-field strength, were derived by increasing and decreasing the driving field intensity. The analysis shows that optical bistability in the dimer with a 3 nm gap can be achieved at switching intensities of about 375 kW cm-2 and 225 kW cm-2, where each stable state of the C-Sh dimer corresponds to a certain plasmonic mode. The range of driving field intensities can be further decreased by considering smaller interparticle distances. The influence of the nonlinear shell on the spectral response is also examined. Suggested configurations distributed on a planar dielectric substrate have potential applications as all-optical switches and memory elements.

2.
Heliyon ; 10(2): e24477, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293417

ABSTRACT

The resonant interaction of a dielectric-coated conductive rod with the X-band microwave field is investigated. The magnetic field distribution of the Goubau standing radial surface waves was experimentally visualized by using a thermo-elastic optical indicator microscope, and the corresponding electric field distribution was determined via numerical simulations. These field distributions are characterized by a certain pattern of antinodes distinctive for standing waves. An analysis of these field distributions allows one to couple a coated rod with a cut Goubau line. A rod placed in the gap region perpendicular to the Goubau line results in a sharp rejection band in the transmission spectrum which is extremely sensitive to the changes in the surrounding media. The shifting rate of the resonance as a function of the dielectric shell thickness is approximately 1.4 GHz/mm. The Q-factor of copper rods depends on their size and dielectric shell thickness. Longer rods with more energy localization areas have higher Q-factors, typically 1.7 times higher (12.7 vs. 7.5). Moreover, incorporating a dielectric shell enhances energy confinement and can elevate the Q-factor by as much as 22 %. When a 25 mm Cu rod is situated inside a cut Goubau line system, the Q-factor values are significantly higher, with a ratio of 275 to 13. With the addition of a dielectric shell, the Q-factor can be elevated by 58 %. The versatility of the proposed controllable system makes it possible to tune the operating spectrum towards higher GHz and THz frequencies.

3.
RSC Adv ; 13(18): 11948-11958, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37077259

ABSTRACT

A simple design of an ultra-broadband metamaterial absorber (MMA) of terahertz (THz) radiation based on vanadium dioxide (VO2) configurations is proposed. The system is composed of a top pattern representing orderly distributed VO2 strips, a dielectric spacer and an Au reflector. Theoretical analysis based on the electric dipole approximation is performed to characterize the absorption and scattering properties of an individual VO2 strip. The results then are used to design an MMA composed of such configurations. It is shown that the efficient absorption characteristics of the Au-insulator-VO2 metamaterial structure can be ensured in a broad spectrum of 0.66-1.84 THz with an absorption band relative to the center frequency reaching as high as 94.4%. The spectrum of the efficient absorption can be easily tuned via the corresponding choice of strip dimensions. Wide polarization and incidence angle tolerance for both transverse electric (TE) and transverse magnetic (TM) polarizations are ensured by adding an identical parallel layer rotated by 90 degrees in respect to the first one. Interference theory is applied to elucidate the absorption mechanism of the structure. The possibility of modulation of the electromagnetic response of MMA relying on the tunable THz optical properties of VO2 is demonstrated.

4.
Sci Rep ; 12(1): 6150, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414676

ABSTRACT

Visualizations of the microwave electric and magnetic near-field distributions of radio-frequency (RF) filters were performed using the technique of thermoelastic optical indicator microscopy (TEOIM). New optical indicators based on periodic dielectric-metal structures were designed for electric field visualization. Depending on the structure orientation, such metasurface-based indicators allow separately visualization of the Ex and Ey components of the in-plane electric field. Numerical simulations were conducted to examine the working principle of the designed indicator structures, and the results were compared to the experimental, showing good agreement. In addition, the 3D visualization of the microwave near-field distribution was built, to show the field intensity and distribution dependencies on the distance from the RF filter.

5.
Appl Opt ; 59(25): 7504-7509, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32902448

ABSTRACT

We propose a thin, compact, broadband, polarization and angle insensitive metamaterial absorber based on a tungsten reflector, a silicon spacer, and a top pattern composed of a double square-like ring resonator utilizing nickel (Ni). In such a structure, a high absorption (above 80%) bandwidth ∼4.8µm from 3.52 up to 8.32 µm corresponding to the relative bandwidth ∼81% can be achieved with deeply subwavelength unit cell dimensions. Here the physical origin of the broadband absorption is associated with low Q-factor dipole modes of the top pattern inner and outer sides functioning as rectangular nanoantennas. Owing to the structural symmetry, the absorber shows a good incidence angle tolerance in the relatively wide range for both transverse electric and transverse magnetic polarizations. The effective parameters of the Ni-based absorber were retrieved using the constitutive effective medium theory, and the absorption characteristics of the effective medium and metamaterial were compared.

SELECTION OF CITATIONS
SEARCH DETAIL
...