Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 1): 051127, 2011 May.
Article in English | MEDLINE | ID: mdl-21728510

ABSTRACT

Networks composed from both connectivity and dependency links were found to be more vulnerable compared to classical networks with only connectivity links. Their percolation transition is usually of a first order compared to the second-order transition found in classical networks. We analytically analyze the effect of different distributions of dependencies links on the robustness of networks. For a random Erdös-Rényi (ER) network with average degree k that is divided into dependency clusters of size s, the fraction of nodes that belong to the giant component P(∞) is given by P(∞)=p(s-1)[1-exp(-kpP(∞))](s), where 1-p is the initial fraction of removed nodes. Our general result coincides with the known Erdös-Rényi equation for random networks for s=1. For networks with Poissonian distribution of dependency links we find that P(∞) is given by P(∞)=f(k,p)(P(∞))e(([s]-1)[pf(k,p)(P(∞))-1]), where f(k,p)(P(∞))≡1-exp(-kpP(∞)) and [s] is the mean value of the size of dependency clusters. For networks with Gaussian distribution of dependency links we show how the average and width of the distribution affect the robustness of the networks.

2.
Proc Natl Acad Sci U S A ; 108(3): 1007-10, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21191103

ABSTRACT

Current network models assume one type of links to define the relations between the network entities. However, many real networks can only be correctly described using two different types of relations. Connectivity links that enable the nodes to function cooperatively as a network and dependency links that bind the failure of one network element to the failure of other network elements. Here we present an analytical framework for studying the robustness of networks that include both connectivity and dependency links. We show that a synergy exists between the failure of connectivity and dependency links that leads to an iterative process of cascading failures that has a devastating effect on the network stability. We present exact analytical results for the dramatic change in the network behavior when introducing dependency links. For a high density of dependency links, the network disintegrates in a form of a first-order phase transition, whereas for a low density of dependency links, the network disintegrates in a second-order transition. Moreover, opposed to networks containing only connectivity links where a broader degree distribution results in a more robust network, when both types of links are present a broad degree distribution leads to higher vulnerability.


Subject(s)
Models, Theoretical , Computer Communication Networks , Computer Simulation , Information Services , Social Support
3.
Phys Rev Lett ; 104(25): 258701, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867419

ABSTRACT

We derive an analytical expression for the critical infection rate r{c} of the susceptible-infectious-susceptible (SIS) disease spreading model on random networks. To obtain r{c}, we first calculate the probability of reinfection π, defined as the probability of a node to reinfect the node that had earlier infected it. We then derive r{c} from π using percolation theory. We show that π is governed by two effects: (i) the requirement from an infecting node to recover prior to its reinfection, which depends on the SIS disease spreading parameters, and (ii) the competition between nodes that simultaneously try to reinfect the same ancestor, which depends on the network topology.


Subject(s)
Disease Outbreaks , Disease Susceptibility , Infections/transmission , Systems Theory , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Humans , Infections/epidemiology , Kinetics , Models, Theoretical , Probability
4.
Phys Rev Lett ; 105(4): 048701, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867893

ABSTRACT

We study a system composed from two interdependent networks A and B, where a fraction of the nodes in network A depends on nodes of network B and a fraction of the nodes in network B depends on nodes of network A. Because of the coupling between the networks, when nodes in one network fail they cause dependent nodes in the other network to also fail. This invokes an iterative cascade of failures in both networks. When a critical fraction of nodes fail, the iterative process results in a percolation phase transition that completely fragments both networks. We show both analytically and numerically that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. The scaling of the percolation order parameter near the critical point is characterized by the critical exponent ß=1.

5.
Nature ; 464(7291): 1025-8, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393559

ABSTRACT

Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 050102, 2009 May.
Article in English | MEDLINE | ID: mdl-19518397

ABSTRACT

We present a unified scaling theory for the structural behavior of polymers embedded in a disordered energy substrate. An optimal polymer configuration is defined as the polymer configuration that minimizes the sum of interacting energies between the monomers and the substrate. The fractal dimension of the optimal polymer in the limit of strong disorder (SD) was found earlier to be larger than the fractal dimension in weak disorder (WD). We introduce a scaling theory for the crossover between the WD and SD limits. For polymers of various sizes in the same disordered substrate we show that polymers with a small number of monomers N<>N* will behave as in WD. This implies that small polymers will be relatively more compact compared to large polymers even in the same substrate. The crossover length N* is a function of nu and a , where nu is the percolation correlation length exponent and a is the parameter which controls the broadness of the disorder. Furthermore, our results show that the crossover between the strong and weak disorder limits can be seen even within the same polymer configuration. If one focuses on a segment of size n<>N*) that segment will have a higher fractal dimension compared to a segment of size n>>N*.

7.
Phys Rev Lett ; 99(18): 188701, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-17995444

ABSTRACT

We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than al(ij)(a> or =1) where l(ij) is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p(c)=(kappa(0)-1)((1-a)/a), where kappa(0) [triple bond] / and k is the node degree. Above p(c), order N nodes can communicate within the limited path length al(ij), while below p(c), N(delta) (delta<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.


Subject(s)
Communication , Information Services , Models, Biological , Models, Theoretical , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...