Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688009

ABSTRACT

Although cochlear implants work well for people with hearing impairment in quiet conditions, it is well-known that they are not as effective in noisy environments. Noise reduction algorithms based on machine learning allied with appropriate speech features can be used to address this problem. The purpose of this study is to investigate the importance of acoustic features in such algorithms. Acoustic features are extracted from speech and noise mixtures and used in conjunction with the ideal binary mask to train a deep neural network to estimate masks for speech synthesis to produce enhanced speech. The intelligibility of this speech is objectively measured using metrics such as Short-time Objective Intelligibility (STOI), Hit Rate minus False Alarm Rate (HIT-FA) and Normalized Covariance Measure (NCM) for both simulated normal-hearing and hearing-impaired scenarios. A wide range of existing features is experimentally evaluated, including features that have not been traditionally applied in this application. The results demonstrate that frequency domain features perform best. In particular, Gammatone features performed best for normal hearing over a range of signal-to-noise ratios and noise types (STOI = 0.7826). Mel spectrogram features exhibited the best overall performance for hearing impairment (NCM = 0.7314). There is a stronger correlation between STOI and NCM than HIT-FA and NCM, suggesting that the former is a better predictor of intelligibility for hearing-impaired listeners. The results of this study may be useful in the design of adaptive intelligibility enhancement systems for cochlear implants based on both the noise level and the nature of the noise (stationary or non-stationary).


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Acoustics , Algorithms , Benchmarking
2.
Sensors (Basel) ; 23(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904976

ABSTRACT

Interacting with other roads users is a challenge for an autonomous vehicle, particularly in urban areas. Existing vehicle systems behave in a reactive manner, warning the driver or applying the brakes when the pedestrian is already in front of the vehicle. The ability to anticipate a pedestrian's crossing intention ahead of time will result in safer roads and smoother vehicle maneuvers. The problem of crossing intent forecasting at intersections is formulated in this paper as a classification task. A model that predicts pedestrian crossing behaviour at different locations around an urban intersection is proposed. The model not only provides a classification label (e.g., crossing, not-crossing), but a quantitative confidence level (i.e., probability). The training and evaluation are carried out using naturalistic trajectories provided by a publicly available dataset recorded from a drone. Results show that the model is able to predict crossing intention within a 3-s time window.

3.
Comput Biol Med ; 133: 104367, 2021 06.
Article in English | MEDLINE | ID: mdl-33866252

ABSTRACT

Paroxysmal atrial fibrillation (PAF) is a cardiac arrhythmia that can eventually lead to heart failure or stroke if left untreated. Early detection of PAF is therefore crucial to prevent any further complications and avoid fatalities. An implantable defibrillator device could be used to both detect and treat the condition though such devices have limited computational capability. With this constraint in mind, this paper presents a novel set of features to accurately predict the presence of PAF. The method is evaluated using ECG signals from the widely used atrial fibrillation prediction database (AFPDB) from PhysioNet. We analysed 106 signals from 53 pairs of ECG recordings. Each pair of signals contains one 5-min ECG segment that ends just before the onset of a PAF event and another 5-min ECG segment at least 45 min distant from the PAF event, to represent a non-PAF event. Seven novel features are extracted through the Poincaré representation of R-R interval signals, and are prioritised through feature ranking schemes. The features are used with four standard classification techniques for PAF prediction and compared to the existing state of the art from the literature. Using only the seven proposed features, classification performance outperforms those of the classical state-of-the-art feature set, registering sensitivity and specificity measurements of over 96%. The results further improve when the features are combined with several of the classical features, with an accuracy increasing to 98% using a linear kernel SVM. The results show that the proposed features provide a useful representation of the PAF condition and achieve good prediction with off-the-shelf classification techniques that would be suitable for ICU deployment.


Subject(s)
Atrial Fibrillation , Algorithms , Atrial Fibrillation/diagnosis , Databases, Factual , Electrocardiography , Heart Rate , Humans
4.
IEEE Rev Biomed Eng ; 13: 5-16, 2020.
Article in English | MEDLINE | ID: mdl-31021774

ABSTRACT

Over the last four decades, implantable cardioverter defibrillators (ICDs) have been widely deployed to reduce sudden cardiac death (SCD) risk in patients with a history of life-threatening arrhythmia. By continuous monitoring of the heart rate, ICDs can use decision algorithms to distinguish normal cardiac sinus rhythm or supra-ventricular tachycardia from abnormal cardiac rhythms like ventricular tachycardia and ventricular fibrillation and deliver appropriate therapy such as an electrical stimulus. Despite the success of ICDs, more research is still needed, particularly in decision-making algorithms. Because of low specificity in practical devices, patients with ICDs still receive inappropriate shocks, which may lead to inadvertent mortality and reduction of quality of life. At the same time, higher sensitivity can lead to the use of newer tiered therapies. The purpose of this study is to review the literature on common signal features used in detection algorithms for abnormal cardiac sinus rhythm, as well as reviewing datasets used for algorithm development in previous studies. More than 50 different features to address heart rate changes before SCD have been reviewed and general methodology on this area proposed based on variety of studies on ICDs functionality. A comparative study on the prediction performance of these features, using a common database, is also presented. By combining these features with a support vector machine classifier, achieved results have compared well with other studies.


Subject(s)
Arrhythmias, Cardiac , Death, Sudden, Cardiac , Defibrillators, Implantable , Signal Processing, Computer-Assisted , Adult , Aged , Algorithms , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/prevention & control , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Young Adult
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6770-6775, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947395

ABSTRACT

Implantable cardioverter defibrillators (ICDs) are commonly used in patients at high risk of sudden cardiac death (SCD) to help prevent and treat life-threatening arrhythmia. Up to 80% of cases of sudden cardiac death are caused by ventricular tachyarrhythmias (VTA) and the accurate prediction of VTA in patients with ICDs can help prevent SCD. Early prediction allows tiered and less invasive therapies to be used to help prevent VTA which are more easily tolerated by the patient and are less battery intensive. In this work, a comparative study of three types of frequency domain features (spectral, bispectrum, and Fourier-Bessel) for VTA prediction is presented based on heart rate variability (HRV) signals between one and five minutes prior to known SCD. Using Fourier-Bessel features and a standard classification approach resulted in the best performance of 87.5% accuracy, 89.3% sensitivity and 85.7% specificity. These results suggest that Fourier-Bessel features are a promising approach for SCD prediction, and that new feature development can help improve both the sensitivity and specificity of SCD prediction in ICDs.


Subject(s)
Defibrillators, Implantable , Tachycardia, Ventricular , Arrhythmias, Cardiac , Death, Sudden, Cardiac , Heart Rate , Humans , Tachycardia
SELECTION OF CITATIONS
SEARCH DETAIL
...