Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 136: 105480, 2022 12.
Article in English | MEDLINE | ID: mdl-36183666

ABSTRACT

The levodopa (L-DOPA) has been reported as a promising adhesive for various materials. In this study, we utilized L-DOPA as an interfacial agent for phosphate glass fibre/polycaprolactone (PGF/PCL) composites, with the aim to enhance the interfacial properties between the fibres and polymer matrix. The PGFs were dip-coated in varying concentrations of L-DOPA solution ranging between 5 and 40 g L-1. The fibre strength and interfacial shear strength (IFSS) of the composites were measured via a single fibre tensile test and single fibre fragmentation test, respectively. It was found that the L-DOPA agent (at conc. 10 g L-1) significantly improved the IFSS of the composites up to 27%. Also, the L-DOPA coating (at conc. 40 g L-1) significantly increased the glass fibre strength up to 18%. As a result, an optimum coating level could be tailored depending on application and whether fibre strength or IFSS was of greater importance. In addition, SEM and TGA analyses were used to detect and quantify the coating agents. FTIR and XPS further confirmed presence of the coating and indicated the zwitterionic crystals of L-DOPA and the formation of a melanin-like polymer layer. The spectroscopy data also evidenced that both catechol and amine groups contributed to the interaction between the L-DOPA and the PGF surface.


Subject(s)
Levodopa , Phosphates , Phosphates/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry , Glass/chemistry
2.
Biomater Sci ; 10(1): 138-152, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34806738

ABSTRACT

3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (<50 wt%) hence low osteoconductivity. Meanwhile, composites with very high inorganic particle concentrations are very brittle. Scaffolds combining high particle content and ductility are urgently required for bone tissue engineering. Herein, 3D printed PCL/hydroxyapatite (HA) scaffolds with high ceramic concentration (up to 90 wt%) are made ductile (>100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA, scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue, suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts, suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.


Subject(s)
Durapatite , Tissue Scaffolds , Animals , Bone Regeneration , Ceramics , Polyesters , Printing, Three-Dimensional , Rats , Tissue Engineering
3.
J Biomed Mater Res B Appl Biomater ; 108(3): 674-686, 2020 04.
Article in English | MEDLINE | ID: mdl-31172669

ABSTRACT

Varying formulations in the glass system of 40P2 O5 ─(24 - x)MgO─(16 + x)CaO─(20 - y)Na2 O─yTiO2 (where 0 ≤ x ≤ 22 and y = 0 or 1) were prepared via melt-quenching. The structure of the glasses was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and the activation energy of crystallization (Ec ) were measured using thermal analysis and the Kissinger equation, respectively. The glass forming ability of the formulations investigated was seen to decrease with reducing MgO content down to 8 mol% and the glass stability region also decreased from 106 to 90°C with decreasing MgO content. The activation energy of crystallization (Ec ) values also decreased from 248 (for 24 mol% MgO glass) to 229 kJ/mol (for the 8 mol% MgO content) with the replacement of MgO by CaO for glasses with no TiO2 . The formulations containing less than 8 mol% MgO without TiO2 showed a strong tendency toward crystallization. However, the addition of 1 mol% TiO2 in place of Na2 O for these glasses with less than 8 mol% MgO content, inhibited their crystallization tendency. Glasses containing 8 mol% MgO with 1 mol% TiO2 revealed a 12°C higher glass transition temperature, a 14°C increase in glass stability against crystallization and a 38 kJ/mol increase in Ec in comparison to their non TiO2 containing counterpart. NMR spectroscopy revealed that all of the formulations contained almost equal percentages of Q1 and Q2 species. However, FTIR and Raman spectroscopies showed that the local structure of the glasses had been altered with addition of 1 mol% TiO2 , which acted as a network modifier, impeding crystallization by increasing the cross-linking between phosphate chains and consequently leading to increased Ec as well as their glass forming ability.


Subject(s)
Magnesium Oxide/chemistry , Phosphates/chemistry , Titanium/chemistry , Calcium Compounds/chemistry , Cross-Linking Reagents/chemistry , Crystallization , Magnetic Resonance Spectroscopy , Molecular Structure , Oxides/chemistry , Sodium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Structure-Activity Relationship , Thermodynamics , Transition Temperature
4.
J Tissue Eng ; 8: 2041731417744454, 2017.
Article in English | MEDLINE | ID: mdl-29276579

ABSTRACT

The unique property of phosphate-based glasses and fibres to be completely dissolved in aqueous media is largely dependent on the glass composition. This article focuses on investigating the effect of replacing Na2O with 3 and 5 mol% Fe2O3 on cytocompatibility, thermal and dissolution properties of P2O5-CaO-Na2O-MgO-B2O3 glass system, where P2O5 content was fixed at 45 mol%. The effect of increasing Fe2O3 from 3 to 5 mol% on P2O5-CaO-Na2O-MgO glasses was also evaluated. The glass transition temperature, onset of crystallisation temperature and liquidus temperature were found to decrease with increasing Fe2O3 content and the addition of B2O3, while the thermal expansion values were found to decrease. The density of the glasses decreased with increasing Fe2O3 content. However, an increase in the density was observed by the addition of 5 mol% B2O3. The dissolution properties and mode of bulk glass and fibres were also examined which were found to decrease with increasing B2O3 and Fe2O3. However, it was found that the dissolution properties of the glasses containing both B2O3 and Fe2O3 were lower than only Fe2O3 containing glasses. The in vitro cell culture studies using human osteoblast like (MG63) cell lines revealed that the glasses containing both B2O3 and Fe2O3 maintained and showed higher cell viability as compared to the only Fe2O3 containing glasses. Glasses containing both B2O3 and Fe2O3 showed a pronounced effect on the dissolution rate of the glasses, which eventually improved the cytocompatibility properties of the glasses investigated.

5.
J Biomed Mater Res B Appl Biomater ; 105(4): 764-777, 2017 05.
Article in English | MEDLINE | ID: mdl-26748481

ABSTRACT

In this study, nine phosphate-based glass formulations from the system P2 O5 -CaO-Na2 O-MgO-B2 O3 were prepared with P2 O5 content fixed as 40, 45 and 50 mol%, where Na2 O was replaced by 5 and 10 mol% B2 O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2 O3 addition on the viscosity-temperature behaviour, fragility index and structure of the glasses was investigated. The composition of the glasses was confirmed by ICP-AES. The viscosity-temperature behaviour of the glasses were measured using beam-bending and parallel -plate viscometers. The viscosity of the glasses investigated was found to shift to higher temperature with increasing B2 O3 content. The kinetic fragility parameter, m and F1/2 , estimated from the viscosity curve were found to decease with increasing B2 O3 content. The structural analysis was achieved by a combination of Fourier transform infrared spectroscopy and solid state nuclear magnetic resonance. 31 P solid-state magic-angle-spinning nuclear magnetic resonance (MAS-NMR) showed that the local structure of the glasses changes with increasing B2 O3 content. As B2 O3 was added to the glass systems, the phosphate connectivity increases as the as the Q1 units transforms into Q2 units. The 11 B NMR results confirmed the presence of tetrahedral boron (BO4 ) units for all the compositions investigated. Structural analysis indicates an increasing level of cross-linking with increasing B2 O3 content. Evidence of the presence of P-O-B bonds was also observed from the FTIR and 31 P NMR analysis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 764-777, 2017.


Subject(s)
Boron Compounds/chemistry , Ceramics/chemistry , Ceramics/chemical synthesis , Hot Temperature , Phosphates/chemistry , Viscosity
6.
J Mech Behav Biomed Mater ; 59: 78-89, 2016 06.
Article in English | MEDLINE | ID: mdl-26748261

ABSTRACT

Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion.


Subject(s)
Absorbable Implants , Glass/chemistry , Phosphates/chemistry , Polyesters/chemistry , Materials Testing
7.
J Mech Behav Biomed Mater ; 59: 41-56, 2016 06.
Article in English | MEDLINE | ID: mdl-26745720

ABSTRACT

In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites.


Subject(s)
Absorbable Implants , Biocompatible Materials/chemistry , Boron/chemistry , Ferric Compounds/chemistry , Glass/chemistry , Cell Line, Tumor , Humans , Materials Testing , Phosphates , Solubility
8.
J Biomed Mater Res B Appl Biomater ; 103(7): 1424-32, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25404499

ABSTRACT

Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.


Subject(s)
Coated Materials, Biocompatible/chemistry , Glass/chemistry , Magnesium/chemistry , Polyesters/chemistry , Surface Properties
9.
J Biomater Appl ; 29(5): 675-87, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25028389

ABSTRACT

Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.


Subject(s)
Biocompatible Materials/chemistry , Magnesium/chemistry , Phosphates/chemistry , Polyesters/chemistry , Cations , Glass/chemistry , Humans , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Electron, Scanning , Osteoblasts/metabolism , Polymers/chemistry , Pressure , Stress, Mechanical , Tensile Strength , Water/chemistry
10.
J Biomater Appl ; 29(5): 639-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24939962

ABSTRACT

Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation.


Subject(s)
Biocompatible Materials/chemistry , Boron Compounds/chemistry , Phosphorus Compounds/chemistry , Tissue Engineering/methods , Glass , Materials Testing , Microscopy, Electron, Scanning , Phosphates/chemistry , Pressure , Solubility , Stress, Mechanical , Tensile Strength
11.
Biomed Res Int ; 2013: 735981, 2013.
Article in English | MEDLINE | ID: mdl-24066297

ABSTRACT

Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.


Subject(s)
Biocompatible Materials/chemistry , Magnesium/chemistry , Prostheses and Implants , Biocompatible Materials/therapeutic use , Glass/chemistry , Humans , Magnesium/therapeutic use , Microscopy, Electron, Scanning , Molecular Weight , Phosphates/chemistry , Polyesters/chemistry , Surface Properties
12.
Biomed Res Int ; 2013: 902427, 2013.
Article in English | MEDLINE | ID: mdl-23991425

ABSTRACT

In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O5)45-(CaO)16-(Na2O)15-x -(MgO)24-(B2O3) x system and four in the system (P2O5)50-(CaO)16-(Na2O)10-x -(MgO)24-(B2O3) x , where x = 0,1, 5 and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied for both glass systems. Addition of B2O3 increased the glass transition (T(g)), crystallisation (T(c)), melting (T(m)), Liquidus (T(L)) and dilatometric softening (T(d)) temperature and molar volume (V(m)). The thermal expansion coefficient (α) and density (ρ) were seen to decrease. An assessment of the thermal stability of the glasses was made in terms of their processing window (crystallisation onset, T(c,ons) minus glass transition temperature, T(g)), and an increase in the processing window was observed with increasing B2O3 content. Degradation studies of the glasses revealed that the rates decreased with increasing B2O3 content and a decrease in degradation rates was also observed as the P2O5 content reduced from 50 to 45 mol%. MG63 osteoblast-like cells cultured in direct contact with the glass samples for 14 days revealed comparative data to the positive control for the cell metabolic activity, proliferation, ALP activity, and morphology for glasses containing up to 5 mol% of B2O3.


Subject(s)
Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Boron/chemistry , Glass/chemistry , Osteoblasts/drug effects , Phosphates/chemistry , Phosphates/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Materials Testing , Mice , Osteoblasts/cytology , Temperature
13.
J Biomater Appl ; 28(3): 354-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22781920

ABSTRACT

Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.


Subject(s)
Biocompatible Materials , Glass , Lactic Acid/metabolism , Phosphates/metabolism , Polymers/metabolism , Photoelectron Spectroscopy , Polyesters , Spectroscopy, Fourier Transform Infrared , Wettability
14.
J Biomater Appl ; 27(8): 990-1002, 2013 May.
Article in English | MEDLINE | ID: mdl-22207606

ABSTRACT

Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.


Subject(s)
Bone Plates , Bone Substitutes/chemistry , Biomechanical Phenomena , Bone Screws , Equipment Failure Analysis , Fracture Fixation, Internal/instrumentation , Gamma Rays , Glass/chemistry , Humans , Lactic Acid/chemistry , Materials Testing , Microscopy, Electron, Scanning , Phosphates/chemistry , Polyesters , Polymers/chemistry , Prosthesis Failure , Sterilization/methods
15.
J Biomater Appl ; 26(7): 765-89, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21123285

ABSTRACT

In this study, bioresorbable phosphate-based glass (PBG) fibers were used to reinforce poly(lactic acid) (PLA). PLA/PBG random mat (RM) and unidirectional (UD) composites were prepared via laminate stacking and compression molding with fiber volume fractions between 14% and 18%, respectively. The percentage of water uptake and mass change for UD composites were higher than the RM composites and unreinforced PLA. The crystallinity of the unreinforced PLA and composites increased during the first few weeks and then a plateau was seen. XRD analysis detected a crystalline peak at 16.6° in the unreinforced PLA sample after 42 days of immersion in phosphate buffer solution (PBS) at 37°C. The initial flexural strength of RM and UD composites was ∼106 and ∼115 MPa, whilst the modulus was ∼6.7 and ∼9 GPa, respectively. After 95 days immersion in PBS at 37°C, the strength decreased to 48 and 52 MPa, respectively as a result of fiber-matrix interface degradation. There was no significant change in flexural modulus for the UD composites, whilst the RM composites saw a decrease of ∼45%. The molecular weight of PLA alone, RM, and UD composites decreased linearly with time during degradation due to chain scission of the matrix. Short fiber pull-out was seen from SEM micrographs for both RM and UD composites.


Subject(s)
Biocompatible Materials/chemistry , Bone Plates , Glass/chemistry , Lactic Acid/chemistry , Phosphates/chemistry , Polymers/chemistry , Crystallization , Materials Testing , Molecular Weight , Polyesters
16.
Br J Oral Maxillofac Surg ; 47(8): 616-21, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19395133

ABSTRACT

Reconstruction of craniomaxillofacial defects is a challenge for surgeons and has psychological and functional burdens for patients. Undoubtedly, there is a need for improved biomaterials and techniques for craniomaxillofacial reconstruction. We assessed the potential regeneration of bone using three modifications of a novel composite and explored the validity of a new measurement using microcomputed tomography (micro-CT). We placed three different composite samples in calvarial defects in rats and analysed healing with micro-CT. The results showed that polycaprolactone (PCL) with phosphate glass fibre is promising for non-load bearing applications in the craniomaxillofacial region. Also, the new micro-CT measurement of the temporal characterisation of the mineralisation of bone (TCBM) has the potential to evolve into a reliable predictor of bony healing and its quality.


Subject(s)
Biocompatible Materials/therapeutic use , Bone Diseases/surgery , Bone Substitutes/therapeutic use , Skull/surgery , X-Ray Microtomography , Animals , Biocompatible Materials/chemistry , Bone Density/physiology , Bone Diseases/diagnostic imaging , Bone Regeneration/physiology , Bone Substitutes/chemistry , Bone Transplantation/diagnostic imaging , Bone Transplantation/pathology , Calcification, Physiologic/physiology , Ceramics/chemistry , Ceramics/therapeutic use , Glass/chemistry , Imaging, Three-Dimensional/methods , Phosphates/chemistry , Polyesters/chemistry , Polyesters/therapeutic use , Rats , Rats, Wistar , Plastic Surgery Procedures/methods , Skull/diagnostic imaging , Time Factors , Wound Healing/physiology , X-Ray Microtomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...