Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Chemosphere ; 259: 127414, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32599381

ABSTRACT

The photocatalytic degradation of simazine (SIM) was investigated using zinc oxide/graphene oxide (ZnO/GO) composite materials under visible light irradiation. The reaction kinetics was studied to optimize the reaction parameters for efficient degradation of SIM. Batch studies were performed to investigate the effects of initial reaction pH, the loading of the ZnO onto GO, and mass of catalyst on the removal of SIM from aqueous solution. A pH of 2 was determined to be the optimal reaction pH for the different ZnO-loaded GO catalysts. In addition, a mass of 40 mg of catalyst in the reaction was observed to be the most effective for the catalysts synthesized using 20 and 30 mmol of Zn2+ ions; whereas a mass of 10 mg was most effective for the ZnO/GO composite material synthesized using 10 mmol Zn2+ ions. The reaction was observed to follow a second-order kinetics for the degradation process. Furthermore, the synthesized ZnO/GO composite catalysts resulted in higher reaction rates than those observed for pure ZnO. The 30 mmol ZnO/GO composite expressed a rate of SIM degradation ten times greater than the rate observed for pure ZnO, and sixty-two times greater than the rate of photolysis. In addition, the catalyst cycling exhibited a constant photocatalytic activity for the ZnO/GO composite over three reaction cycles without the need of a conditioning cycle.


Subject(s)
Graphite/chemistry , Simazine/chemistry , Zinc Oxide/chemistry , Catalysis , Light , Photolysis
2.
Microchem J ; 140: 80-86, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30510324

ABSTRACT

In the present study, pyrrhotite (Fe7S8) was investigated for the removal of Pb2+ and Cu2+ ions from aqueous solution. The Fe7S8 material was prepared through a solvothermal method and was characterized using XRD. The average particle size for the nanomaterial was determined to be 29.86 ± 0.87 nm using XRD analysis and Scherrer's equation. Batch studies were performed to investigate the effects of pH, time, temperature, interfering ions, and the binding capacity of Pb2+ and Cu2+ ions to the Fe7S8 nanomaterial. During the pH profile studies, the optimum pH for the binding of Pb2+ and Cu2+ was determined to be pH 5 for both cations. Isotherm studies were conducted from which the thermodynamics and binding capacities for both Cu2+ and Pb2+ were determined. The binding capacity for Pb2+ and Cu2+ binding to the Fe7S8 were determined to be 0.039 and 0.102 mmol/g, respectively at 25°C. The thermodynamic parameters indicated a ΔG for the sorption of Pb2+ ranged from 5.07 kJ/mol to -2.45 kJ/mol indicating a non-spontaneous process was occurring. Whereas, the ΔG for Cu2+ ion binding ranged from 9.78 kJ/mol to -11.23 kJ/mol indicating a spontaneous process at higher temperatures. The enthalpy indicated an endothermic reaction was occurring for the binding of Pb2+ and Cu2+ to the Fe7S8 nanomaterial with ΔH values of 55.8 kJ/mol and 153.5 kJ/mol, respectively. Furthermore, the ΔS values for the reactions were positive indicating an increase in the entropy of the system after metal ion binding. Activation energy studies indicated the binding for both Pb2+ and Cu2+ occurred through chemisorption.

3.
Microchem J ; 141: 188-196, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30510325

ABSTRACT

Tin oxide, SnO2, nanomaterial was synthesized and tested for the removal of Cu2+ and Ni2+ ions from aqueous solutions. Various parameters for the binding were investigated in batch studied, which included pH, time, temperature, and interferences. In addition, isotherm studied were performed to determine the maximum binding capacity for both Cu2+ and Ni2+ ions. The optimal binding pH determined from the effects of pH were to be at pH 5 for both the Cu2+ and Ni2+ ions. The isotherm studies were performed at temperatures of 4°C, 25 °C, and 45 °C for both the Cu2+ and Ni2+ ions and were found to follow the Langmuir isotherm model. The binding capacities for the Cu2+ ions were 2.63 mg/g, 2.95 mg/g and 3.27 mg/g at the aforementioned temperatures, respectively. Whereas the binding capacities for Ni2+ were 0.79 mg/g, 1.07 mg/g, and 1.46 mg/g at the respective temperatures. The determined thermodynamic parameters for the binding showed that the binding processes for the reactions were endothermic, as the ΔG was observed to decrease with decreasing temperatures. As well the ΔH was 28.73 kJ/mol for Cu2+ (III) and 13.37 kJ/mol for Ni2+. The ΔS was observed to be 92.65 J/mol for Cu2+ and 54.53 J/mol for Ni2+. The free energy of adsorption for the Cu2+ was determined to be 13.99 kJ/mol and the activation energy for the binding of Ni2+ was determined to be 8.09 KJ/mol. The activation energy data indicate that the reaction was occurring through chemisorption.

4.
Microchem J ; 133: 614-621, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29081543

ABSTRACT

A Rancieite type material (K2Mn4O9) nanomaterial was synthesized and tested for the removal of chromium (III) and chromium (VI) from aqueous solutions. The synthesized nanomaterial was characterized using powder XRD and SEM. XRD showed weak diffraction peaks at only at the angles associated with K2Mn4O9. The SEM corroborated that the nanoparticles were present; however, the nanoparticles were clustered into larger aggregates. Batch studies were performed to determine the optimum pH, capacity, time dependency, interferences, and the thermodynamics of the binding. The optimum pH for the binding of Cr(III) and Cr(VI) were determined to be pH 5 and pH 2, respectively. Isotherm studies were performed at temperatures of 4 , 25 , and 45 for Cr(III) and Cr(VI) and showed binding capacities of 21.7 mg/g, 36.5 mg/g, 41.8 mg/g for Cr(III). The Cr(VI) binding capacities were 4.22 mg/g, 4.08 mg/g, and 3.25 mg/g at the respective temperatures. The thermodynamic studies showed that the binding processes for the reactions were spontaneous and endothermic, with a ΔH was 17.54 kJ/mol for Cr(III) and 6.05 kJ/mol for Cr(VI). The of sorption for Cr(III) were determined to be -3.88 kJ/mol, -5.83 kJ/mol and -7.03 kJ/mol at the aforementioned temperatures. The ΔG values for the Cr(VI) sorption were determined to be -4.89 kJ/mol, -5.64 kJ/mol, and -6.05 kJ/mol. In addition, the ΔS values for Cr(III) and Cr(VI) were determined to be 77.92 J/mol and 39.49 J/mol, respectively. The thermodynamics indicate that the binding of Cr(III) and Cr(VI) is spontaneous and endothermic.

5.
Chem Eng J ; 290: 428-437, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27065750

ABSTRACT

In the present study, pyrrhotite was used to remove arsenite and arsenate from aqueous solutions. The Fe7S8 was synthesized using a solvothermal synthetic method and it was characterized using XRD and SEM micrographs. Furthermore, the particle size for the nanomaterial Fe7S8 was determined to be 29.86 ± 0.87 nm using Scherer's equation. During the pH profile studies, the optimum pH for the binding of As (III) and As (V) was determined to be pH 4. Batch isotherm studies were performed to determine the binding capacity of As(III) and As(V), which was determined to be 14.3 mg/g and 31.3 mg/g respectively for 25°C. The thermodynamic studies indicated that the ΔG for the sorption of As(III) and As(V) ranged from -115.5 to -0.96 kJ/mol, indicating a spontaneous process was occurring. The enthalpy indicated that an exothermic reaction was occurring during the adsorption in which the ΔH was -53.69 kJ/mol and -32.51 kJ/mol for As(III) and As(V) respectively. In addition, ΔS values for the reaction had negative values of -160.46 J/K and -99.77 J/K for the adsorption of As(III) and As(V) respectively which indicated that the reaction was spontaneous at low temperatures. Furthermore, the sorption for As(III) and As(V) was determined to follow the second order kinetics adsorption model.

6.
Microchem J ; 125: 97-104, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26811549

ABSTRACT

Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu2+ and Pb2+ ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu2+ and Pb2+ to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu2+ and Pb2+ showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu2+ and Pb2+. The binding capacity of Fe3O4 with Cu2+ and Pb2+ were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu2+ and Pb2+ were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu2+ or Pb2+ to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na+, K+, Mg2+ and Ca2+ or a solution consisting of a combination of all the aforementioned cations in one solution.

7.
Microchem J ; 117: 52-60, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25097269

ABSTRACT

The removal of arsenic(III) and arsenic(V) from an aqueous solution through adsorption on to Fe3O4, MnFe2O4, 50% Mn substituted Fe3O4, 75% Mn substituted Fe3O4, and Mn3O4 nanomaterials was investigated. Characterization of the nanomaterials using XRD showed only pure phases for Mn3O4, MnFe2O4, and Fe3O4. The 50% and 75% substituted nanomaterials were found to be mixtures of Mn3O4 and Fe3O4. From batch studies the optimum binding pH of arsenic(III) and arsenic(V) to the nanomaterials was determined to be pH 3. The binding capacity for As(III) and As(VI) to the various nanomaterials was determined using Isotherm studies. The binding capacity of Fe3O4 was determined to be 17.1 mg/g for arsenic(III) and 7.0 mg/g for arsenic(V). The substitution of 25% Mn into the Fe3O4 lattice showed a slight increase in the binding capacity for As(III) and As(VI) to 23.8 mg/g and 7.9 mg/g, respectively. The 50% substituted showed the maximum binding capacity of 41.5 mg/g and 13.9 mg/g for arsenic(III) and arsenic(V). The 75% Mn substituted Fe3O4 capacities were 16.7 mg/g for arsenic(III) and 8.2 mg/g for arsenic(V). The binding capacity of the Mn3O4 was determined to be 13.5 mg/g for arsenic(III) and 7.5 mg/g for arsenic(V). In addition, interference studies on the effects of SO2-4, PO3-4, Cl-, and NO-3 investigated. All the interferences had very minimal effects on the As(III) and As(V) binding never fell below 20% even in the presence of 1000 ppm interfering ions.

8.
Chem Eng J ; 254: 374-383, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25097453

ABSTRACT

In this study, a manganese oxide, Mn3O4 was used to remove chromium(III) and chromium(VI) from aqueous solutions. The Mn3O4 nanomaterial was synthesized through a precipitation method, and was characterized using XRD, which confirmed the material had a crystal structure similar to hausmannite. In addition, using Scherrer's equation it was determined that the nanomaterial had an average grain size of 19.5 ± 1.10 nm. A study of the effects of pH on the binding of chromium(III) and chromium(VI) showed that the optimum binding pH was 4 and 3 respectively. Batch isotherm studies were performed to determine the binding capacity of chromium(III), which was determined to be 18.7 mg/g, 41.7 mg/g, and 54.4 mg/g respectively for 4°C, 21°C, and 45°C. Chromium(VI) on the other hand had lower binding capacities of 2.5 mg/g, 4.3 mg/g, and 5.8 mg/g for 4°C, 21°C, 45°C, respectively. Thermodynamic studies performed indicated the sorption process was for the most part controlled by physisorption. The ΔG for the sorption of chromium(III) and Chromium(VI) ranged from -0.9 to -13 kJ/mol, indicating a spontaneous reaction was occurring. The enthalpy indicated a endothermic reaction was occurring during the binding and show ΔH values of 70.6 and 19.1 kJ.mol for chromium(III) and Chromium(VI), respectively. In addition, ΔS for the reaction had positive values of 267 and 73 J/mol for chromium(III) and chromium(VI) which indicate a spontaneous reaction. In addition, the sorption process was found to follow pseudo second order kinetic and the activation energy studies indicated the binding process occurred through chemisorption.

9.
J Colloid Interface Sci ; 400: 97-103, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23558081

ABSTRACT

Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4±0.9 nm (Fe3O4) and 15.5±0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative.


Subject(s)
Chromium/isolation & purification , Ferric Compounds/chemistry , Ferrosoferric Oxide/chemistry , Manganese Compounds/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Thermodynamics
10.
Nanotechnology ; 21(36): 365703, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20699488

ABSTRACT

Using ac-susceptibility, dc-magnetization, and transmission electron microscopy, we have investigated the magnetic behavior of Mn(3)O(4) nanoparticle ensembles at temperatures below the paramagnetic-to-ferrimagnetic transition of the title material (T(N) approximately equal 41 K). Our data show no evidence of the complex magnetic ordering exhibited by bulk Mn(3)O(4), or of a magnetic behavior around T(N) that has a dynamic (relaxation) origin. Instead, we find a low-temperature (at approximately 11 K) magnetic anomaly that manifests itself as a peak in the out-of-phase component of the ac-susceptibility. Analysis of the frequency and average-particle-size dependence of the peak temperature demonstrates that this behavior is due to the onset of superparamagnetic relaxation, and not to a previously hinted at spin-glass-like transition. Indeed, the relative peak temperature variation per frequency decade DeltaT/TDeltalog(f) is 0.11, an order of magnitude larger than the value expected for collective spin freezing, but within the range of values observed for superparamagnetic blocking. Furthermore, attempts to fit the frequency f/observation time tau = 1/2pif dependence of the peak temperature by a power law led to parameter values unexpected for a spin-glass transition. On the other hand, a Vogel-Fulcher law tau = tau(0)exp[E(B)/k(B)(T - T(0))]-where E(B) is the energy barrier to magnetization reversal, k(B) is the Boltzmann constant, tau(0) and T(0) are constants related to the attempt frequency and the interparticle interaction strength-correctly describes the peak shift and yields values consistent with the superparamagnetic behavior of a slightly interacting system of nanoparticles. In addition, the peak temperature T is sensitive to minute changes in the average particle size (D), and scales as (T - T(0) is proportional to(D)3, another signature of superparamagnetic relaxation.

11.
Appl Spectrosc ; 63(8): 961-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19678996

ABSTRACT

The speciation of elements without pre-edge features preformed with X-ray absorption near edge structure (XANES) can lead to problems when the energy difference between two species is small. The speciation of arsenic (As) in plant samples was investigated using the mixtures As2S3/As2O5, As2S3/As2O3, or As2O3/As2O5. The data showed that the energy separation (eV) between As2O5 and As2S3 was 5.8, between As2O3 and As2O5 was 3.6, and between As2S3 and As2O3 was 2.1. From the intensity of the white-line feature and the concentration of As species, calibration curves showing a limit of detection of approximately 10% were generated. In addition, an error of +/-10% was determined for the linear combination-XANES (LC-XANES) fitting technique. The difference between the LC-XANES fittings and calculations from the calibration curves was <10%. The data also showed that the speciation of As in a sample can be determined using EXAFS (extended X-ray absorption fine structure). Finally, it was also shown that both EXAFS and XANES of the sample should be examined to determine the true speciation of an element. Even though there is a difference of 2 eV between As(III) bound to O and As(III) bound to S, in the EXAFS region the As(III)-S and As(III)-O ligands are clearly visible. However, distinction between the As(III)-O and As(V)-O ligands in the EXAFS spectra was not clearly visible in this study.


Subject(s)
Absorptiometry, Photon/methods , Arsenicals/chemistry , Plants/chemistry , Arsenicals/analysis , Arsenicals/metabolism , Calibration , Fourier Analysis , Least-Squares Analysis , Linear Models , Models, Molecular , Oxidation-Reduction , Plant Roots/chemistry , Plant Roots/metabolism , Plants/metabolism , Prosopis/chemistry , Prosopis/metabolism , Salix/chemistry , Salix/metabolism , Sensitivity and Specificity
12.
J Phys Chem Solids ; 70(3): 555-560, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-20161181

ABSTRACT

Microwave assisted synthesis of iron oxide/oxyhydroxide nanophases was conducted using iron(III) chloride titrated with sodium hydroxide at seven different temperatures from 100 degrees C to 250 degrees C with pulsed microwaves. From the XRD results, it was determined that there were two different phases synthesized during the reactions which were temperature dependent. At the lower temperatures, 100 degrees C and 125 degrees C, it was determined that an iron oxyhydroxide chloride was synthesized. Whereas, at higher temperatures, at 150 degrees C and above, iron(III) oxide was synthesized. From the XRD, we also determined the FWHM and the average size of the nanoparticles using the Scherrer equation. The average size of the nanoparticles synthesized using the experimental conditions were 17, 21, 12, 22, 26, 33, 28 nm, respectively for the reactions from 100 degrees C to 250 degrees C. The particles also had low anisotropy indicating spherical nanoparticles, which was later confirmed using TEM. Finally, XAS studies show that the iron present in the nanophase was present as iron(III) coordinated to six oxygen atoms in the first coordination shell. The higher coordination shells also conform very closely to the ideal or bulk crystal structures.

13.
Chemosphere ; 70(11): 2076-83, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17928032

ABSTRACT

ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.


Subject(s)
Arsenic/metabolism , Zea mays/metabolism , Arsenicals/metabolism , Metals/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Seedlings/metabolism , Spectrum Analysis/methods , Sulfides/metabolism , Sulfur/metabolism , X-Rays
14.
Plant Physiol Biochem ; 45(6-7): 457-63, 2007.
Article in English | MEDLINE | ID: mdl-17467281

ABSTRACT

Arsenite (As(III)) and arsenate (As(V)) uptake by peas was investigated using inductively coupled plasma/optical emission spectroscopy (ICP-OES) at pH below 4 and at pH 5.8. Additionally, total amylolitic activity and alpha-amylase (1,4-alpha-d-glucan glucanohydrolase; EC 3.2.1.1) activity was assayed in plants exposed to arsenic treatments. At pH below 4, the uptake for As(III) and As(V) in roots was 137 and 124 mg As kg(-1) dry weight (d wt), respectively. Translocation of arsenic to the aerial part was relatively low ( approximately 5mg As kg(-1) d wt). The uptake for As(III) and As(V) in roots at pH 5.8 was about 43 and 30 mg As kg(-1) d wt, respectively, and translocation of As to the aerial part was not detectable. None of the arsenic treatments affected the total amylolitic activity in roots; however, the shoots from all treatments showed an increase in the total amylolitic activity. Alpha-amylase activity in the pea leaves was not significantly affected by arsenic treatments. X-ray absorption spectroscopy (XAS) studies showed a reduction of As(V) to As(III) in the roots. From linear combination X-ray absorption near edge structure (LC-XANES) fittings, it was determined that arsenic was present as a mixture of As(III) oxide and sulfide in pea roots.


Subject(s)
Arsenic/metabolism , Arsenic/pharmacology , Pisum sativum/metabolism , Spectrometry, X-Ray Emission/methods , Amylases/drug effects , Amylases/metabolism , Biological Transport , Pisum sativum/drug effects , Plant Proteins/metabolism , alpha-Amylases/metabolism
15.
Appl Spectrosc ; 61(3): 338-45, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17389076

ABSTRACT

For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately +/-10% of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 A for the Cr(VI) and Cr(III) in the sample, respectively.


Subject(s)
Agave/chemistry , Chromium/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectrometry, X-Ray Emission/methods , Chromium/analysis , Oxidation-Reduction , Spectrometry, X-Ray Emission/standards
16.
Oecologia ; 152(1): 112-4, 2007 May.
Article in English | MEDLINE | ID: mdl-17216209

ABSTRACT

This research provides the first evidence of dispersal of bryophytes and associated microorganisms through ingestion by a highly mobile vertebrate vector, the spectacled flying fox (Pteropus conspicillatus). Bryophyte fragments were found in faeces collected at four P. conspicillatus' camps in the Wet Tropics bioregion, northeastern Australia. These fragments were viable when grown in culture; live invertebrates and other organisms were also present. Our study has significantly increased understanding of the role of flying foxes as dispersal vectors in tropical forests.


Subject(s)
Bryophyta/physiology , Chiroptera/physiology , Feeding Behavior , Animals , Biodiversity , Bryophyta/growth & development , Bryophyta/metabolism , Diet , Feces , Queensland , Reproduction, Asexual , Trees , Tropical Climate
17.
Chemosphere ; 67(11): 2257-66, 2007 May.
Article in English | MEDLINE | ID: mdl-17258269

ABSTRACT

Growth, accumulation and intracellular speciation and distribution of copper (Cu) in Sesbania drummondii was studied using scanning-electron microscopy (SEM), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The growth of seedlings was assessed in terms of biomass accumulation. The growth of the seedling was enhanced by 73.5% at a low Cu concentration (50 mg l-1) compared to the control treatment. Additionally, seedling growth was inhibited by 18% at 300 mg l-1 Cu with respect to the control. Copper concentration in roots and shoots was increased with increasing Cu concentration in the growth solution. The accumulation of Cu was found to be higher in roots than in the shoots. At a concentration of 300 mg l-1 Cu, the roots accumulated 27,440 mg Cu kg-1 dry weight (dw) while shoots accumulated 1282 mg Cu kg-1 dw. Seedlings were assessed for photosynthetic activity by measuring chlorophyll a fluorescence parameters: Fv/Fm and Fv/F0 values. Photosynthetic integrity was not affected by any of the Cu treatments. The X-ray absorption spectroscopic (XAS) studies showed that Cu was predominantly present as Cu(II) in Sesbania tissue. In addition, from the XAS studies it was shown that the Cu exists in a mixture of different coordination states consisting of Cu bound to sugars and small organic acids with some possible precipitated copper oxide. From the EXAFS studies, the coordination of Cu was determined to have four equatorial oxygen(nitrogen) ligands at 1.96 A and two axial oxygen ligands at 2.31 A. Scanning-electron microscopy studies revealed the distribution of Cu within the seedlings tissues, predominantly accumulated in the cortical and vascular (xylem) regions of root tissues. In the stem, most of the Cu was found within the xylem tissue. However, the deposition of Cu within the leaf tissues was in the parenchyma. The present study demonstrates the mechanisms employed by S. drummondii for Cu uptake and its biotransformation.


Subject(s)
Copper/metabolism , Sesbania/metabolism , Biomass , Copper/chemistry , Copper/pharmacology , Microscopy, Electron, Scanning , Photosynthesis/drug effects , Seedlings/drug effects , Seedlings/growth & development , Sesbania/cytology , Sesbania/growth & development , Spectrometry, X-Ray Emission
18.
Sci Total Environ ; 379(2-3): 249-55, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17055035

ABSTRACT

This study describes the effects of Arsenic(III) and (V) on the growth and their uptake by the desert plant mesquite (Prosopis spp.). Seedlings were sown in agar-based medium containing a modified Hoagland's nutrient solution. After 1 week, the seedlings were transplanted to arsenic (As) treated agar media that contained 5 mgL(-1) of As either As(III) (As(2)O(3)) or As(V) (As(2)O(5)). The plants were harvested after 14 days of growth and sectioned into roots, stems, and leaves. After digestion, As concentrations in the roots, stems, and leaves were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Our results showed that the As concentrations from As(V) were significantly higher than the As concentrations from As(III) in all portions of the plant. Plants exposed to As(V) concentrated (mg As kg(-1) d wt) about 770+/-191, 326+/-94, and 119+/-18 in roots, stems, and leaves, respectively. X-ray absorption spectroscopy (XAS) showed that As(V) was reduced to As(III) inside the mesquite plant. In addition, greater than 90% of the As(III) found in the mesquite plants was bound to sulfur ligands in the roots, stems and leaves.


Subject(s)
Arsenic/metabolism , Prosopis/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism , Spectrum Analysis , X-Rays
19.
Environ Sci Technol ; 40(13): 4181-8, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16856733

ABSTRACT

Studies have shown that biomaterials have the capacity to adsorb heavy metals and metal oxo-cations from aqueous solution. In addition, previous studies have shown that biomaterials have the ability to bind uranyl cations from solution with capacities that are comparable to or greater than some commercially available synthetic ion-exchange resins. By using chemical modification, inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray absorption spectroscopy (XAS), we have found that the primary functional group on alfalfa biomass responsible for the binding of uranyl cations from aqueous solution is the carboxyl functionality. Batch pH dependency experiments show a direct relationship between the increase in binding and the increase in pH (up to pH 4.5). XAS experiments showed that the major ligand involved in the binding of uranyl cations from aqueous solution was either a nitrogen or oxygen ligand with coordination numbers ranging from 6 to 10 +/- 1.


Subject(s)
Medicago sativa/chemistry , Uranium/metabolism , Adsorption , Biomass , Carbon/chemistry , Cations/chemistry , Hydrogen-Ion Concentration , Medicago sativa/metabolism , Nitrogen/chemistry , Oxygen/chemistry , Solutions , Spectrophotometry, Atomic , Spectrum Analysis , Uranium/chemistry
20.
Talanta ; 67(1): 34-45, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-18970134

ABSTRACT

Metal pollution in the aqueous environment has become an important issue in the past few decades leading to extensive research in the area of pollution remediation. Most of the recent research in this area has been in bioremediation including phytofiltration and phytoextraction. Although there has been a lot of research done in the field of metal interactions with plants, the actual mechanism(s) and ligands involved are not well understood. Through a series of batch experiments, including pH profiles, time dependency studies, and capacity experiments, we have investigated the binding of Gd(III) and Nd(III) to alfalfa biomass. Batch pH studies showed that the optimum binding was at pH 5.0 for both elements. The time dependency experiments showed that the binding occurs within the first 5min of contact and remains constant for up to 60min. In addition, chemical modifications to the alfalfa biomass were performed to indirectly determine the ligands on the biomass responsible for metal binding. For Gd(III) binding, it was shown that the carboxyl groups on the biomass play the most important role in metal ion binding. However, for Nd(III), not only was it found that the carboxyl groups play an important role in the binding, but in addition, the amino groups on the biomass also play an important role in the binding of the metal ions. Further studies using X-ray absorption spectroscopy (XAS) showed that the Gd(III) and Nd(III) ions were bound to the alfalfa biomass through oxygen (or nitrogen ligands), which were coordinated to carbon atoms. The lanthanide complexes within the biomass included some coordinated water molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...