Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 10(24): 2384-2396, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-31040929

ABSTRACT

We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor-normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue.

2.
BMC Genomics ; 19(1): 180, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29510677

ABSTRACT

BACKGROUND: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. RESULTS: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. CONCLUSIONS: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process.


Subject(s)
Brain/metabolism , Gene Expression Profiling/standards , Genome, Human , Liver/metabolism , MicroRNAs/genetics , Placenta/metabolism , Female , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Pregnancy , Reference Standards
3.
BMC Biotechnol ; 16(1): 54, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27342544

ABSTRACT

BACKGROUND: Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. RESULTS: ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. CONCLUSIONS: The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.


Subject(s)
Gene Expression Profiling/standards , High-Throughput Nucleotide Sequencing/standards , RNA/genetics , RNA/standards , Sequence Analysis, RNA/standards , Algorithms , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Reference Values , Reproducibility of Results , Sensitivity and Specificity
4.
J Struct Biol ; 153(2): 103-12, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16377205

ABSTRACT

An essential step in understanding the molecular basis of protein-protein interactions is the accurate identification of inter-protein contacts. We evaluate a number of common methods used in analyzing protein-protein interfaces: a Voronoi polyhedra-based approach, changes in solvent accessible surface area (DeltaSASA) and various radial cutoffs (closest atom, Cbeta, and centroid). First, we compared the Voronoi polyhedra-based analysis to the DeltaSASA and show that using Voronoi polyhedra finds knob-in-hole contacts. To assess the accuracy between the Voronoi polyhedra-based approach and the various radial cutoff methods, two sets of data were used: a small set of 75 experimental mutants and a larger one of 592 structures of protein-protein interfaces. In an assessment using the small set, the Voronoi polyhedra-based methods, a solvent accessible surface area method, and the closest atom radial method identified 100% of the direct contacts defined by mutagenesis data, but only the Voronoi polyhedra-based method found no false positives. The other radial methods were not able to find all of the direct contacts even using a cutoff of 9A. With the larger set of structures, we compared the overall number contacts using the Voronoi polyhedra-based method as a standard. All the radial methods using a 6-A cutoff identified more interactions, but these putative contacts included many false positives as well as missed many false negatives. While radial cutoffs are quicker to calculate as well as to implement, this result highlights why radial cutoff methods do not have the proper resolution to detail the non-homogeneous packing within protein interfaces, and suggests an inappropriate bias in pair-wise contact potentials. Of the radial cutoff methods, using the closest atom approach exhibits the best approximation to the more intensive Voronoi calculation. Our version of the Voronoi polyhedra-based method QContacts is available at .


Subject(s)
Evaluation Studies as Topic , Models, Molecular , Databases, Protein , Models, Chemical , Mutation , Protein Binding , Proteins/chemistry , Solvents/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...