Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels ; 14(1): 57, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663577

ABSTRACT

BACKGROUND: Heterotrophic single-cell oils (SCOs) are one potential replacement to lipid-derived biofuels sourced from first-generation crops such as palm oil. However, despite a large experimental research effort in this area, there are only a handful of techno-economic modelling publications. As such, there is little understanding of whether SCOs are, or could ever be, a potential competitive replacement. To help address this question, we designed a detailed model that coupled a hypothetical heterotroph (using the very best possible biological lipid production) with the largest and most efficient chemical plant design possible. RESULTS: Our base case gave a lipid selling price of $1.81/kg for ~ 8,000 tonnes/year production, that could be reduced to $1.20/kg on increasing production to ~ 48,000 tonnes of lipid a year. A range of scenarios to further reduce this cost were then assessed, including using a thermotolerant strain (reducing the cost from $1.20 to $1.15/kg), zero-cost electricity ($ 1.12/kg), using non-sterile conditions ($1.19/kg), wet extraction of lipids ($1.16/kg), continuous production of extracellular lipid ($0.99/kg) and selling the whole yeast cell, including recovering value for the protein and carbohydrate ($0.81/kg). If co-products were produced alongside the lipid then the price could be effectively reduced to $0, depending on the amount of carbon funnelled away from lipid production, as long as the co-product could be sold in excess of $1/kg. CONCLUSIONS: The model presented here represents an ideal case that which while not achievable in reality, importantly would not be able to be improved on, irrespective of the scientific advances in this area. From the scenarios explored, it is possible to produce lower cost SCOs, but research must start to be applied in three key areas, firstly designing products where the whole cell is used. Secondly, further work on the product systems that produce lipids extracellularly in a continuous processing methodology or finally that create an effective biorefinery designed to produce a low molecular weight, bulk chemical, alongside the lipid. All other research areas will only ever give incremental gains rather than leading towards an economically competitive, sustainable, microbial oil.

2.
Bioresour Technol ; 303: 122862, 2020 May.
Article in English | MEDLINE | ID: mdl-32037189

ABSTRACT

Oleaginous microalgae and yeast are of increasing interest as a renewable resource for single cell oils (SCOs). These have applications in fuels, feed and food products. In order to become cost competitive with existing terrestrial oils, a biorefinery approach is often taken where several product streams are valorised alongside the SCO. Whilst many life cycle assessment (LCA) and Techno-economic (TEA) studies have employed this biorefinery approach to SCO production, a systematic analysis of their implications is missing. This review evaluates the economic and environmental impacts associated with the use of coproducts. Overall, protein production plays the greatest role in determining viability, with coproduct strategy crucial to considering in the early stages of research and development.


Subject(s)
Biofuels , Microalgae , Plant Oils , Saccharomyces cerevisiae
3.
J Chem Technol Biotechnol ; 93(8): 2118-2130, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30069076

ABSTRACT

BACKGROUND: 2-phenylethanol (2PE) is a fragrance molecule predominantly used in perfumes and the food industry. It can be made from petrochemicals inexpensively, however, this is unsuitable for most food applications. Currently, the main method of production for the bio-derived compound is to extract the trace amounts found in rose petals, which is extremely costly. Potentially fermentation could provide an inexpensive, naturally sourced, alternative. RESULTS: In this investigation, 2PE was produced from the yeast Metschnikowia pulcherrima, optimised in flasks before scaling to 2 L batch and continuous operation. 2PE can be produced in high titres under de novo process conditions with up to 1500 mg L-1 achieved in a 2 L stirred bioreactor. This is the highest reported de novo titre to date, and achieved through high sugar loadings coupled with low nitrogen conditions. The process successfully ran in continuous mode also, with a concentration of 650 mg L-1 of 2PE being maintained. The 2PE production was further increased by the ex novo conversion of phenylalanine and semi-continuous solid phase extraction from the supernatant. Under optimal conditions 14 000 mg L-1 of 2PE was produced. CONCLUSIONS: The work presented here offers a novel route to naturally sourced 2PE through a scalable fermentation with a robust yeast highly suited to industrial biotechnology. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Mar Pollut Bull ; 128: 162-174, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29571359

ABSTRACT

Marine litter, in particular plastic debris, poses a serious threat to marine life, human health and the economy. In order to reduce its impact, marine litter collections such as beach clean-ups are frequently conducted. This paper presents a systematic review of temporal developments, geographical distribution, quantities and waste treatment pathways of collected marine litter. Results from over 130 studies and projects highlight the worldwide increase in collection efforts. Many of these are in wealthy countries that do not primarily contribute to the problem. Over 250 thousand tonnes, have already been removed, but there is little or no information available regarding how this waste is treated or used post collection. This paper highlights the need for a whole-system quantitative assessment for the collection and waste treatment of marine litter, and identifies the challenges associated with utilising this waste in the future.


Subject(s)
Bathing Beaches/standards , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Plastics/analysis , Waste Products/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...