Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(19): 7890-9, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25191794

ABSTRACT

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/chemical synthesis , Immunoconjugates/pharmacology , Maytansine/analogs & derivatives , Protein Engineering , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Trastuzumab
2.
Nat Biotechnol ; 30(2): 184-9, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-22267010

ABSTRACT

The reactive thiol in cysteine is used for coupling maleimide linkers in the generation of antibody conjugates. To assess the impact of the conjugation site, we engineered cysteines into a therapeutic HER2/neu antibody at three sites differing in solvent accessibility and local charge. The highly solvent-accessible site rapidly lost conjugated thiol-reactive linkers in plasma owing to maleimide exchange with reactive thiols in albumin, free cysteine or glutathione. In contrast, a partially accessible site with a positively charged environment promoted hydrolysis of the succinimide ring in the linker, thereby preventing this exchange reaction. The site with partial solvent-accessibility and neutral charge displayed both properties. In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma. Thus, the chemical and structural dynamics of the conjugation site can influence antibody conjugate performance by modulating the stability of the antibody-linker interface.


Subject(s)
Antibodies/blood , Antibodies/immunology , Binding Sites, Antibody/immunology , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoglobulin G/chemistry , Protein Engineering , Aminobenzoates/chemistry , Aminobenzoates/immunology , Animals , Antibodies/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Cell Line, Tumor , Cell Survival , Cysteine/chemistry , Humans , Immunoconjugates/administration & dosage , Immunoglobulin G/immunology , Macaca fascicularis , Maleimides/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/immunology , Maytansine/chemistry , Maytansine/immunology , Mice , Mice, Nude , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/immunology , Protein Conformation , Rats , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry , Trastuzumab
3.
Mol Cancer Ther ; 11(3): 752-62, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22222630

ABSTRACT

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibody Affinity/immunology , Antibody Specificity/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Indium Radioisotopes/chemistry , Indium Radioisotopes/pharmacokinetics , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , Mice , Mice, Nude , Multimodal Imaging , Positron-Emission Tomography , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Tissue Distribution , Tomography, X-Ray Computed , Trastuzumab , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...