Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(46): 31645-31652, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27834978

ABSTRACT

The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant K. The magnitude of K is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼106 Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the "pseudo-layer" structure of the TB phase with Beff in the range 103-104 Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director.

2.
Radiat Environ Biophys ; 52(2): 235-44, 2013 May.
Article in English | MEDLINE | ID: mdl-23358597

ABSTRACT

Unit-1 of the Bushehr nuclear power plant (BNPP-1) is a VVER-type reactor with 1,000-MWe power constructed near Bushehr city at the coast of the Persian Gulf, Iran. The reactor has been recently operational to near its full power. The radiological impact of nuclear power plant (NPP) accidents is of public concern, and the assessment of radiological consequences of any hypothetical nuclear accident on public exposure is vital. The hypothetical accident scenario considered in this paper is a design-basis accident, that is, a primary coolant leakage to the secondary circuit. This scenario was selected in order to compare and verify the results obtained in the present paper with those reported in the Final Safety Analysis Report (FSAR 2007) of the BNPP-1 and to develop a well-proven methodology that can be used to study other and more severe hypothetical accident scenarios for this reactor. In the present study, the version 2.01 of the PC COSYMA code was applied. In the early phase of the accidental releases, effective doses (from external and internal exposures) as well as individual and collective doses (due to the late phase of accidental releases) were evaluated. The surrounding area of the BNPP-1 within a radius of 80 km was subdivided into seven concentric rings and 16 sectors, and distribution of population and agricultural products was calculated for this grid. The results show that during the first year following the modeled hypothetical accident, the effective doses do not exceed the limit of 5 mSv, for the considered distances from the BNPP-1. The results obtained in this study are in good agreement with those in the FSAR-2007 report. The agreement obtained is in light of many inherent uncertainties and variables existing in the two modeling procedures applied and proves that the methodology applied here can also be used to model other severe hypothetical accident scenarios of the BNPP-1 such as a small and large break in the reactor coolant system as well as beyond design-basis accidents. Such scenarios are planned to be studied in the near future, for this reactor.


Subject(s)
Environmental Exposure/analysis , Models, Theoretical , Nuclear Power Plants , Radioactive Hazard Release , Food Chain , Food Contamination , Humans , Iran , Radiation Dosage , Radioisotopes/analysis , Risk Assessment , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...