Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 112: 24-31, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25129712

ABSTRACT

The influence of adding different polysaccharides (locust bean gum, LBG; methyl cellulose, MC; and carboxymethyl cellulose, CMC) to gluten-based biodegradable polymeric materials was assessed in this work. Gluten/polysaccharide/plasticiser bioplastics were prepared at different polysaccharide concentrations (0-4.5%) and pH values by mixing in a two-blade counter-rotating batch mixer (at 25 °C under adiabatic conditions) and thermomoulding at 9MPa and 130 °C. Bioplastic probes were evaluated through dynamic mechanical thermal analysis, tensile strength and water absorption capacity tests. Results pointed out that a moderate enhancement of the network structure may be achieved by adding polysaccharide at a pH close to the protein isoelectric point (pH 6), which also conferred a further thermosetting capacity to the system. Moreover, the addition of MC and CMC was found to significantly enhance material elongation properties. However, the presence of charges induced by pH leaded to a higher incompatibility between the polysaccharide and protein domains forming the composite. The pH value played a relevant role in the material water absorption, which significantly increased under acidic or basic conditions (particularly at pH 3).


Subject(s)
Biodegradable Plastics/chemistry , Glutens/chemistry , Polysaccharides/chemistry , Carboxymethylcellulose Sodium/chemistry , Galactans/chemistry , Hydrogen-Ion Concentration , Mannans/chemistry , Methylcellulose/chemistry , Plant Gums/chemistry , Tensile Strength , Water/chemistry
2.
Food Sci Technol Int ; 19(1): 3-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23239763

ABSTRACT

This work deals with the manufacture of oil-in-water food emulsions stabilised by tuna proteins. The influence of protein and oil concentrations on the linear viscoelastic properties and microstructure of these emulsions was analysed. Stable emulsions with suitable linear viscoelastic response and microstructural characteristics were formulated with 70 wt.% oil and, at least, 0.25 wt.% tuna protein. Similarly, emulsions with oil concentrations between 45 and 70 wt.% were prepared using 0.50 wt.% protein. All these emulsions showed a predominantly elastic response in the linear viscoelastic region and a well-developed plateau region in its mechanical spectrum. Rheological and droplet size distribution results pointed out an extensive droplet flocculation, due to interactions among emulsifier molecules located at the oil-water interface of adjacent droplets. As a result, the linear viscoelastic behaviour was controlled by protein-protein interactions, allowing the use of the plateau modulus to successfully normalise both the storage and loss moduli as a function of frequency onto a master curve, irrespective of the selected emulsion formulation.


Subject(s)
Emulsions/chemistry , Fish Proteins/chemistry , Food , Tuna , Viscoelastic Substances/chemistry , Animals , Rheology
3.
Bioresour Technol ; 102(10): 6246-53, 2011 May.
Article in English | MEDLINE | ID: mdl-21398112

ABSTRACT

Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.


Subject(s)
Glutens/chemistry , Glycerol/chemistry , Models, Theoretical , Plastics , Thermogravimetry
4.
Bioresour Technol ; 101(6): 2007-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19900806

ABSTRACT

Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs.


Subject(s)
Biocompatible Materials/chemistry , Biopolymers/chemistry , Biotechnology/methods , Plastics/chemistry , Proteins/chemistry , Starch/chemistry , Albumins/chemistry , Calorimetry, Differential Scanning/methods , Glycerol/chemistry , Materials Testing , Optics and Photonics , Stress, Mechanical , Surface Properties , Tensile Strength , Triticum
5.
Bioresour Technol ; 100(5): 1828-32, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19022663

ABSTRACT

Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.


Subject(s)
Biopolymers/chemistry , Biotechnology/methods , Glutens/chemistry , Plastics/chemistry , Absorption , Delayed-Action Preparations , Hot Temperature , Potassium Chloride/chemistry , Rheology , Water
6.
J Colloid Interface Sci ; 290(2): 546-56, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-15963520

ABSTRACT

Rheometrical techniques can be profitably used for polysaccharide matrices in order to evaluate their suitability for the preparation of stable cosmetic O/W emulsions. In particular, the rheological properties of aqueous scleroglucan systems were investigated under continuous and oscillatory shear conditions in a polymer concentration range (0.2-1.2% w/w) embracing the sol/gel transition. The effects due to the addition of two different surfactants (up to 10% w/w) were examined at constant polymer concentration (0.4% w/w). The selected additives are a nonionic polymeric siliconic surfactant (dimethicone copolyol) and a cationic surfactant (tetradecyltrimethylammonium bromide), respectively. Polysaccharide-surfactant interactions leading to complex formation were detected also through rheology. The combined action of both nonionic and cationic surfactants in the polymer solution was examined at two different surfactant concentration levels (5 and 10% w/w), demonstrating the beneficial effects produced on the mechanical properties of the polymer matrix by the coexistence of both surfactants. Such beneficial effects are confirmed by the stability and rheology shown by the emulsions prepared. In this way, the results point out the good agreement between the rheology of the continuous phase and the final characteristics of the emulsion obtained.


Subject(s)
Cosmetics/chemistry , Polysaccharides/chemistry , Surface-Active Agents/chemistry , Adsorption , Emulsions/chemistry , Oscillometry , Particle Size , Rheology , Solutions/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...