Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37212544

ABSTRACT

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

2.
Angew Chem Int Ed Engl ; 62(36): e202305108, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37227225

ABSTRACT

Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 µs at 297 K. Radiative rate constants kr as high as 2.8×105  s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...