Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Med ; 10(1): 3, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282094

ABSTRACT

BACKGROUND: The use of medical 3D printing (focusing on anatomical modeling) has continued to grow since the Radiological Society of North America's (RSNA) 3D Printing Special Interest Group (3DPSIG) released its initial guideline and appropriateness rating document in 2018. The 3DPSIG formed a focused writing group to provide updated appropriateness ratings for 3D printing anatomical models across a variety of congenital heart disease. Evidence-based- (where available) and expert-consensus-driven appropriateness ratings are provided for twenty-eight congenital heart lesion categories. METHODS: A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with pediatric congenital heart disease indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS: Evidence-based recommendations for when 3D printing is appropriate are provided for pediatric congenital heart lesions. Recommendations are provided in accordance with strength of evidence of publications corresponding to each cardiac clinical scenario combined with expert opinion from members of the 3DPSIG. CONCLUSIONS: This consensus appropriateness ratings document, created by the members of the RSNA 3DPSIG, provides a reference for clinical standards of 3D printing for pediatric congenital heart disease clinical scenarios.

2.
Int J Comput Assist Radiol Surg ; 18(1): 95-104, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36152167

ABSTRACT

BACKGROUND AND OBJECTIVES: Patient-specific models may have a role in planning and executing complex surgical procedures. However, creating patient-specific models with virtual surgical planning (VSP) has many steps, from initial imaging to finally realizing the three-dimensional printed model (3DPM). This manuscript evaluated the feasibility and potential benefits of multimodal imaging and geometric VSP and 3DPM in pediatric orthopedic tumor resection and reconstruction. MATERIALS AND METHODS: Twelve children with Ewing's sarcoma, osteosarcoma, or chondrosarcoma were studied. Computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) were acquired as the standard-of-care. Bony and soft tissue components of the tumor and the adjacent bone were segmented to create a computer-generated 3D model of the region. VSP used the computer-generated 3D model. The Objet350 Stratasys™ polyjet printer printed the final physical model used for pre-surgical planning, intraoperative reference, and patient education. Clinical impact, the utility of the model, and its geometric accuracy were assessed. RESULTS: Subjectively, using the patient-specific model assisted in preoperative planning and intra-operative execution of the surgical plan. The mean difference between the models and the surgical resection was -0.09 mm (range: -0.29-0.45 mm). Pearson's correlation coefficient (r) of the cross-sectional area was -0.9994, linear regression r2 = 0.9989, and the Bland Altman plot at 95% confidence interval showed all data within boundaries. CONCLUSION: We studied the geometric accuracy, utility and clinical impact of VSP and 3DPM produced from multi-modal imaging studies and concluded 3DPM accurately represented the patients' tumor and proved very useful to the surgeon in both the preoperative surgical planning, patient and family education and operative phases. Future studies will be planned to evaluate surgery procedure duration and other outcomes.


Subject(s)
Neoplasms , Surgery, Computer-Assisted , Child , Humans , Surgery, Computer-Assisted/methods , Printing, Three-Dimensional , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional
3.
Semin Thorac Cardiovasc Surg ; 34(1): 226-235, 2022.
Article in English | MEDLINE | ID: mdl-33242612

ABSTRACT

This study aims to assess the differences in pressure, fractional flow reserve (FFR) and coronary flow (with increasing pressure) of the proximal coronary artery in patients with anomalous aortic origin of a coronary artery with a confirmed ischemic event, without ischemic events, and before and after unroofing surgery, and compare to a patient with normal coronary arteries. Patient-specific flow models were 3D printed for 3 subjects with anomalous right coronary arteries with intramural course, 2 of them had documented ischemia, and compared with a patient with normal coronaries. The models were placed in the aortic position of a pulse duplicator and precise measurements to quantify FFR and coronary flow rate were performed from the aortic to the mediastinal segment of the anomalous right coronary artery. In an ischemic model, a gradual FFR drop (emulating that of pressure) was shown from the ostium location (∼1.0) to the distal intramural course (0.48). In nonischemic and normal patient models, FFR for all locations did not drop below 0.9. In a second ischemic model prior to repair, a drop to 0.44 was encountered at the intramural and mediastinal intersection, improving to 0.86 postrepair. There is a difference in instantaneous coronary flow rate with increasing aortic pressure in the ischemic models (slope 0.2846), compared to the postrepair and normal models (slope >0.53). These observations on patient models support a biomechanical basis for ischemia and potentially sudden cardiac death in aortic origin of a coronary artery, with a drop in pressure and FFR in the intramural segment, and a decrease in coronary flow rate with increasing aortic pressure, with both improving after corrective surgery.


Subject(s)
Coronary Vessel Anomalies , Fractional Flow Reserve, Myocardial , Aorta/diagnostic imaging , Aorta/surgery , Child , Coronary Vessel Anomalies/complications , Coronary Vessel Anomalies/diagnostic imaging , Coronary Vessel Anomalies/surgery , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Humans , Treatment Outcome
4.
BMJ Case Rep ; 14(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649040

ABSTRACT

3D-printed patient-specific models provide added value for initial clinical diagnosis, preoperative surgical and implant planning and patient and trainee education. 3D spine models are usually designed using CT data, due to the ability to rapidly image osseous structures with high spatial resolution. Combining CT and MRI to derive a composite model of bony and neurological anatomy can potentially provide even more useful information for complex cases. We describe such a case involving an adolescent with a grade V spondylolisthesis in which a composite model was manufactured for preoperative and intraoperative evaluation and guidance. We provide a detailed workflow for creating such models and outline their potential benefit in guiding a multidisciplinary team approach.


Subject(s)
Spondylolisthesis , Adolescent , Humans , Magnetic Resonance Imaging , Printing, Three-Dimensional , Prostheses and Implants , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Tomography, X-Ray Computed
5.
Comput Methods Programs Biomed ; 201: 105947, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33535084

ABSTRACT

BACKGROUND AND OBJECTIVE: This study aims to determine the accuracy of patient specific 3D printed models in capturing pathological anatomical characteristics derived from CT angiography (CTA) in children with anomalous aortic origin of a coronary artery (AAOCA). METHODS & MATERIALS: Following institutional regulatory approval, a standardized protocol for CTA of AAOCA was utilized for imaging. Blood volume of the aorta and coronaries were segmented from the DICOM images. A total of 10 models from 8 AAOCA patients were created, including 2 post-operative models. Mechanical properties of Agilus30 a flexible photopolymer coated with a thin layer of parylene, polyurethane (PU) and silicone and native aortic tissue from a postmortem specimen were compared. AAOCA models with wall thicknesses of 2mm aorta and 1.5mm coronaries were 3D printed in Agilus30 and coated with PU. CT of the printed models was performed, and 3D virtual models were generated. Transfer of anatomical characteristics and geometric accuracy were compared between the patient model virtual models. RESULTS: Dynamic modulus of Agilus30 at 2mm thickness was found to be close to native aortic tissue. Structured reporting of anatomical characteristics by imaging experts showed good concordance between patient and model CTA Comparative patient and virtual model measurements showed Pearson's correlation (r) of 0.9959 for aorta (n=70) and 0.9538 for coronaries (n=60) linear, and 0.9949 for aorta (n=30) and 0.9538 for coronaries (n=30) cross-sectional, dimensions. Surface contour map mean difference was 0.08 ± 0.29mm. CONCLUSIONS: Geometrically accurate AAOCA models preserving morphological characteristics, essential for risk stratification and decision-making, can be 3D printed from a patient's CTA.


Subject(s)
Coronary Vessel Anomalies , Aorta/diagnostic imaging , Child , Cross-Sectional Studies , Feasibility Studies , Humans , Printing, Three-Dimensional
6.
J Magn Reson Imaging ; 51(6): 1641-1658, 2020 06.
Article in English | MEDLINE | ID: mdl-31329332

ABSTRACT

3D printing (3DP) applications for clinical evaluation, preoperative planning, patient and trainee education, and simulation has increased in the past decade. Most of the applications are found in cardiovascular, head and neck, orthopedic, neurological, urological, and oncological surgical cases. This review has three parts. The first part discusses the technical pathway to realizing a physical model, 3DP considerations in pediatric MRI image acquisition, data and resolution requirements, and related structural segmentation and postprocessing steps needed to generalize both virtual and physical models. Standard practices and processing software used in these processes will be assessed. The second part discusses complementary examples in pediatric applications, including cases from cardiology, neuroradiology, neurology, and neurosurgery, head and neck, orthopedics, pelvic and urological applications, oncological applications, and fetal imaging. The third part explores other 3D printing applications and considerations such as using 3DP to develop tissue-specific phantoms and devices for testing in the MR environment, to educate patients and their families, to train clinicians and students, and facility requirements for building a 3DP program. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:1641-1658.


Subject(s)
Cardiology , Printing, Three-Dimensional , Child , Computer Simulation , Humans , Magnetic Resonance Imaging , Software
7.
Ann Maxillofac Surg ; 4(1): 9-18, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24987592

ABSTRACT

Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction.

8.
J Mech Behav Biomed Mater ; 3(3): 249-59, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20142109

ABSTRACT

Patient specific porous implants for the reconstruction of craniofacial defects have gained importance due to their better performance over their generic counterparts. The recent introduction of electron beam melting (EBM) for the processing of titanium has led to a one step fabrication of porous custom titanium implants with controlled porosity to meet the requirements of the anatomy and functions at the region of implantation. This paper discusses an image based micro-structural analysis and the mechanical characterization of porous Ti6Al4V structures fabricated using the EBM rapid manufacturing process. SEM studies have indicated the complete melting of the powder material with no evidence of poor inter-layer bonding. Micro-CT scan analysis of the samples indicate well formed titanium struts and fully interconnected pores with porosities varying from 49.75%-70.32%. Compression tests of the samples showed effective stiffness values ranging from 0.57(+/-0.05)-2.92(+/-0.17)GPa and compressive strength values of 7.28(+/-0.93)-163.02(+/-11.98)MPa. For nearly the same porosity values of 49.75% and 50.75%, with a variation in only the strut thickness in the sample sets, the compressive stiffness and strength decreased significantly from 2.92 GPa to 0.57 GPa (80.5% reduction) and 163.02 MPa to 7.28 MPa (93.54 % reduction) respectively. The grain density of the fabricated Ti6Al4V structures was found to be 4.423 g/cm(3) equivalent to that of dense Ti6Al4V parts fabricated using conventional methods. In conclusion, from a mechanical strength viewpoint, we have found that the porous structures produced by the electron beam melting process present a promising rapid manufacturing process for the direct fabrication of customized titanium implants for enabling personalized medicine.


Subject(s)
Electrons , Materials Testing/methods , Titanium/chemistry , Alloys , Bone Substitutes/chemistry , Bone and Bones/physiology , Compressive Strength , Microscopy, Electron, Scanning , Porosity , Prostheses and Implants , Surface Properties , Weight-Bearing , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...