Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Nanosci Nanotechnol ; 9(1): 650-4, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441363

ABSTRACT

A molecular monolayer of 4-nitrothiophenol ongold electrodes is reduced electrochemically when its nitro groups are converted into amino groups by potentiometric scans. The protonated amine with its NH3+ functions can be employed to induce the self-assembly of gold nanoparticles at the surface of the electrodes. The electrochemical reaction and the induced assembly process can be controlled at the nanoscale level on the electrodes with a high degree of selectivity. The technology opens up the possibility of fabricating complex multi-nanomaterial nanostructures on the basis of a two-step electrochemical assembly process.

2.
Bioconjug Chem ; 18(6): 1919-23, 2007.
Article in English | MEDLINE | ID: mdl-17960874

ABSTRACT

The rational design of surfaces for immobilization of proteins is essential to a variety of biological and medical applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. We have developed an advanced electrochemically based approach for site-selective and reaction-controlled immobilization of proteins on surfaces. When a molecular monolayer of 4-nitrothiophenol on gold electrode surfaces is reduced electrochemically in a selective fashion at its nitro groups, to afford amino groups by potentiometric scans, the amine can be employed to orchestrate the immobilization of proteins to the surface. This protein immobilization strategy could allow one to fabricate intricate protein structures on surfaces for addressing fundamental and applied problems in biology and medicine.


Subject(s)
Proteins/chemistry , Electrochemistry , Spectrum Analysis , Surface Plasmon Resonance , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...