Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805817

ABSTRACT

PolyJet™ 3D printers have been widely used for the fabrication of microfluidic molds to replicate castable resins due to the ease to create microstructures with smooth surfaces. However, the microstructures fabricated by PolyJet printers do not accurately match with those defined by the computer-aided design (CAD) drawing. While the reflow and spreading of the resin before photopolymerization are known to increase the lateral dimension (width) of the printed structures, the influence of resin spreading on the vertical dimension (height) has not been fully investigated. In this work, we characterized the deviations in both lateral and vertical dimensions of the microstructures printed by PolyJet printers. The width of the printed structures was always larger than the designed width due to the spreading of resin. Importantly, the microstructures designed with narrow widths failed to reproduce the intended heights of the structures. Our study revealed that there existed a threshold width (wd') required to achieve the designed height, and the layer thickness (a parameter set by the printer) influenced the threshold width. The thresholds width to achieve the designed height was found to be 300, 300, and 500 µm for the print layer thicknesses of 16, 28, and 36 µm, respectively. We further developed two general mathematical models for the regions above and below this threshold width. Our models represented the experimental data with an accuracy of more than 96% for the two different regions. We validated our models against the experimental data and the maximum deviation was found to be <4.5%. Our experimental findings and model framework should be useful for the design and fabrication of microstructures using PolyJet printers, which can be replicated to form microfluidic devices.

2.
Biomicrofluidics ; 15(2): 024111, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33912266

ABSTRACT

Replica obtained from micromolds patterned by simple photolithography has features with uniform heights, and attainable microchannels are thus quasi-two-dimensional. Recent progress in three-dimensional (3D) printing has enabled facile desktop fabrication of molds to replicate microchannels with varying heights. We investigated the replica obtained from four common techniques of 3D printing-fused deposition modeling, selective laser sintering, photo-polymer inkjet printing (PJ), and stereolithography (SL)-for the suitability to form microchannels in terms of the surface roughness inherent to the mechanism of 3D printing. There have been limited quantitative studies that focused on the surface roughness of a 3D-printed mold with different methods of 3D printing. We discussed that the surface roughness of the molds affected (1) transparency of the replica and (2) delamination pressure of poly(dimethylsiloxane) replica bonded to flat glass substrates. Thereafter, we quantified the accuracy of replication from 3D-printed molds by comparing the dimensions of the replicated parts to the designed dimensions and tested the ability to fabricate closely spaced microchannels. This study suggested that molds printed by PJ and SL printers were suitable for replica molding to fabricate microchannels with varying heights. The insight from this study shall be useful to fabricate 3D microchannels with controlled 3D patterns of flows guided by the geometry of the microchannels.

3.
Soft Matter ; 15(21): 4244-4254, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31016319

ABSTRACT

Self-assembly of droplets guided by microfluidic channels have potential applications ranging from high throughput assays to materials synthesis, but such demonstrations have been limited primarily to two-dimensional (2D) assembly of droplets in planar microfluidic devices. We demonstrated the use of three-dimensional (3D) microchannels to self-assemble droplets into ordered 2D and 3D arrays by designing microchannels with axial gradients in height and controlling the volume fraction of the droplets in the channel. In contrast to previous demonstrations, ordered 2D arrays of droplets were assembled at low volume fractions of the dispersed phase. Interestingly, we found that the self-assembly of droplets in microchannels was highly path dependent. The assembly of droplets was governed by transitions in the cross-sectional shapes of the microchannel, not the final geometry of the chamber for the assembly of droplet, which is a hitherto rarely explored phenomenon. The assembled droplets were used as templates for the fabrication of millimeter scale, anisotropic hydrogel fibers with ordered pore sizes (∼250 µm). These demonstrations suggested that 3D microchannels would be a viable platform for the manipulation of droplets, and applicable for the continuous synthesis of complex materials with 3D morphologies.

4.
Biomicrofluidics ; 12(6): 064105, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30867866

ABSTRACT

Microchannels made of fluoropolymers show potential merits due to their excellent solvent resistance, but such channels have not been widely used because of the complexity to fabricate them. This communication describes a method to prototype microfluidic devices using fluoropolymer films. The fabrication requires only two steps; cutting fluoropolymer films with a desktop cutting plotter and applying heat and pressure to laminate them. The method is rapid, simple, and low-cost. The conditions for heat press were identified for two common fluoropolymers: polytetrafluoroethylene and fluorinated ethylene propylene. The laminated films were confirmed to remain sealed with an internal pressure of at least 300 kPa. The fabricated devices were tested for the resistance to a set of organic solvents that would not be compatible with typical devices fabricated in polydimethylsiloxane. To highlight the potential of the fluoropolymer devices fabricated in this method, generation of droplets in a continuous stream of organic solvent using a T-junction channel was demonstrated. Our method offers a simple avenue to prototype microfluidic devices to conduct experiments involving organic solvents such as organic chemistry and in-channel synthesis of microparticles.

5.
Biomicrofluidics ; 7(4): 44123, 2013.
Article in English | MEDLINE | ID: mdl-24404056

ABSTRACT

We present the first experimental demonstration of confined microfluidic droplets acting as discrete negative resistors, wherein the effective hydrodynamic resistance to flow in a microchannel is reduced by the presence of a droplet. The implications of this hitherto unexplored regime in the traffic of droplets in microfluidic networks are highlighted by demonstrating bistable filtering into either arm of symmetric and asymmetric microfluidic loops, and programming oscillatory droplet routing therein.

6.
Lab Chip ; 12(3): 582-8, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22051610

ABSTRACT

We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.


Subject(s)
Filtration/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidics/instrumentation , Gases , Hydrodynamics , Molecular Dynamics Simulation , Pressure , Sensitivity and Specificity , Surface Tension
7.
Lab Chip ; 10(18): 2458-63, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20697661

ABSTRACT

We present a new and general scheme for analytical applications of droplet-based microfluidics in which flowing droplets function not only as isolated reaction flasks, but are also capable of on-drop separation and sensing. To demonstrate this, we choose ionic liquids as designer fluids whose chemical and physical properties can be tailored in task-specific fashion. We create aqueous-ionic liquid compound droplets with tunable structures using an imidazolium-based ionic liquid, and present two analytical applications-separation of a binary aqueous mixture of organic dyes and dynamic pH sensing-to highlight the salient features of this scheme. By combining designer fluids with designer microfluidic emulsions, our work opens up a rich space of exploration for analytical microfluidics.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Ionic Liquids/chemistry , Microfluidic Analytical Techniques , Coloring Agents/analysis , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Hydrogen-Ion Concentration , Organic Chemicals/analysis , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...