Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 610, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773269

ABSTRACT

The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.


Subject(s)
Bacterial Proteins , Membrane Transport Proteins , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Bacteria/metabolism , Bacteria/genetics , Signal Transduction , Protein Folding , Artificial Intelligence
2.
FEBS J ; 290(17): 4238-4255, 2023 09.
Article in English | MEDLINE | ID: mdl-37213112

ABSTRACT

Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.


Subject(s)
Formate Dehydrogenases , NAD , NAD/metabolism , Formate Dehydrogenases/genetics , NADP/metabolism , Formates/metabolism , Sulfhydryl Compounds
3.
ACS Synth Biol ; 12(4): 947-962, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37052416

ABSTRACT

The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.


Subject(s)
Artificial Cells , NAD , NAD/metabolism , NADP/metabolism , Coenzymes/metabolism , Oxidation-Reduction , Niacinamide
4.
ACS Synth Biol ; 12(4): 922-946, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37027340

ABSTRACT

Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.


Subject(s)
Artificial Cells , Artificial Cells/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/genetics , Unilamellar Liposomes/metabolism
5.
J Biol Chem ; 298(9): 102304, 2022 09.
Article in English | MEDLINE | ID: mdl-35933012

ABSTRACT

Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.


Subject(s)
Conserved Sequence , Escherichia coli Proteins , NADP Transhydrogenase, B-Specific , Amino Acid Motifs , Amino Acid Sequence , Cysteine/chemistry , Cysteine/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Flavoproteins/chemistry , Hydrogen Peroxide/chemistry , NAD/metabolism , NADP/metabolism , NADP Transhydrogenase, B-Specific/chemistry , NADP Transhydrogenase, B-Specific/genetics , Niacinamide , Oxygen/chemistry , Superoxides/chemistry , Threonine/chemistry , Threonine/genetics
6.
JACS Au ; 1(12): 2280-2293, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34984417

ABSTRACT

Effective metabolic pathways are essential for the construction of in vitro systems mimicking the biochemical complexity of living cells. Such pathways require the inclusion of a metabolic branch that ensures the availability of reducing equivalents. Here, we built a minimal enzymatic pathway confinable in the lumen of liposomes, in which the redox status of the nicotinamide cofactors NADH and NADPH is controlled by an externally provided formate. Formic acid permeates the membrane where a luminal formate dehydrogenase uses NAD+ to form NADH and carbon dioxide. Carbon dioxide diffuses out of the liposomes, leaving only the reducing equivalents in the lumen. A soluble transhydrogenase subsequently utilizes NADH for reduction of NADP+ thereby making NAD+ available again for the first reaction. The pathway is functional in liposomes ranging from a few hundred nanometers in diameter (large unilamellar vesicles) up to several tens of micrometers (giant unilamellar vesicles) and remains active over a period of 7 days. We demonstrate that the downstream biochemical process of reduction of glutathione disulfide can be driven by the transfer of reducing equivalents from formate via NAD(P)H, thereby providing a versatile set of electron donors for reductive metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...